News

[News] Intensifying Battle of Technology Among Storage Giants


2024-04-16 Semiconductors editor

AI and big data are driving a massive demand for memory data, which also imposes higher requirements on memory technologies. Against this backdrop, the technology competition among memory giants is heating up.

In terms of NAND Flash, major companies are focusing on breakthroughs in the number of layers. Recently, The Korean Economic Daily reported that Samsung Electronics is expected to mass-produce the ninth-generation NAND Flash (V-NAND) later this month.

The company had already produced the 236-layer eighth-generation V-NAND Flash memory at scale in 2022. The upcoming ninth-generation V-NAND Flash memory will continue to use the structure of double NAND Flash stacks, with the number of layers reaching 290. According to industry predictions, Samsung’s future tenth-generation V-NAND is expected to reach 430 layers, and Samsung will switch to a three-stack structure at that time.

Looking further into the future, both Samsung and Kioxia have revealed plans to develop 1000-layer NAND Flash. Samsung aims to develop 1000-layer NAND Flash by 2030, while Kioxia plans to mass-produce 3D NAND Flash chips with more than 1000 layers by 2031.

In terms of DRAM, memory giants are zeroing in on advanced process nodes and 3D DRAM.

In March 2024, Micron disclosed in its financial result that the majority of DRAM chips are currently at the 1α and 1β advanced nodes, and the next generation 1γ DRAM will introduce EUV lithography machine, which has already undergone trial production.

Samsung’s DRAM chip technique is at the 1b nm level, and recent reports suggest that Samsung plans to start large-scale production of 1c nm DRAM within this year, using EUV technology. Samsung will also step into the era of 3D DRAM in 2025. The company has already demonstrated two 3D DRAM technologies: vertical channel transistors and stacked DRAM.

SK Hynix is also developing 3D DRAM. Last year, BusinessKorea reported that SK Hynix proposed using IGZO as the new generation channel material for 3D DRAM. According to industry sources, IGZO is a metal oxide material composed of indium, gallium, and zinc oxide. Its biggest advantage is its low standby power consumption, making it suitable for DRAM transistors requiring long lifespan. This characteristic is easily achievable by adjusting the composition ratio of In, Ga, and ZnO.

(Photo credit: Samsung)

Please note that this article cites information from The Korean Economic Daily .