According to Taiwan’s TechNews report, Lu Donghui, Chairman of Micron Technology Taiwan, stated that in response to the growing demand in the AI market, Micron Technology Taiwan will continue to invest in advanced processes and packaging technologies to produce High Bandwidth Memory (HBM) products. Micron Technology Taiwan is the only Micron facility globally with advanced packaging capabilities.
Lu Donghui, speaking at a media event, mentioned that Micron had previously introduced the industry’s first 8-layer stack (8-High) 24GB HBM3 Gen 2 product, which is now in the sampling phase. This product boasts a bandwidth exceeding 1.2TB/s and a transmission rate exceeding 9.2Gb/s, which is 50% higher than other HBM3 solutions on the market. Micron’s HBM3 Gen 2 product offers 2.5 times better energy efficiency per watt compared to previous generations, making it ideal for high-performance AI applications.
Micron’s HBM3 Gen 2 memory products are manufactured using the most advanced 1-beta process technology in Taiwan and Japan. Compared to the previous 1-alpha process, the 1-beta process reduces power consumption by approximately 15% and increases bit density by over 35%, with each chip offering a capacity of up to 16Gb. Through Micron’s advanced packaging technology, the 1-beta process memory chips are stacked in 8 layers, and the complete HBM3 Gen 2 chips are packaged and sent to customers’ specified semiconductor foundries like TSMC, Intel, Samsung, or third-party packaging and testing facilities for GPUs, CPUs.
Lu Donghui highlighted that Taiwan’s robust semiconductor manufacturing ecosystem makes it the exclusive hub for Micron’s advanced packaging development worldwide. By combining this ecosystem with Micron’s offerings, they can provide customers with comprehensive solutions to meet market demands. While HBM products represent a relatively small portion of the overall memory market, their future growth potential is significant, with expectations to capture around 10% of the entire memory market in the short term.
(Photo credit: Micron)