As semiconductor manufacturing enters the Angstrom Era, there have been significant adjustments in architecture and circuit design. To free up more surface area on chips, moving power delivery to the backside has become a mainstream consensus, making the Backside Power Delivery Network (BSPDN) the premier solution in advanced manufacturing.
According to a report from Commercial Times, regarding BSPDN, leading companies such as TSMC, Intel, and imec (Belgian Microelectronics Research Center) have proposed different approaches focusing on wafer thinning, atomic layer deposition (ALD) inspection, and wafer regeneration solutions, with mass production starting from 2026, benefiting supply chains.
Among them, TSMC’s Super Power Rail is considered direct and effective, albeit complex and expensive to implement. To reflect its value, TSMC has adjusted its pricing strategy. According to the report, the foundry leader has successfully raised prices for advanced processes, with further increases slated for January 1 next year, particularly targeting the 3/5-nanometer AI product lines with adjustments ranging from 5% to 10%.
Industry sources cited by the same report point out that there are several technological breakthroughs in backside power delivery. One critical aspect involves polishing the wafer backside to a thickness close enough for transistor contact. However, this process significantly compromises the wafer’s rigidity. Therefore, after front-side polishing, it’s essential to bond a carrier wafer to support the backside manufacturing process.
Additionally, technologies like nano Through-Silicon Vias (nTSV) require more equipment for ensuring uniform copper metal deposition within nano-scale holes.
Therefore, leading companies have proposed different approaches focusing on wafer thinning, atomic layer deposition (ALD) inspection, and wafer regeneration solutions. This development is benefiting related supply chain entities such as Kinik Company, Skytech, and Phoenix Silicon International Corporation.
Read more
(Photo credit: TSMC)