GlobalWafers has achieved a milestone by successfully advancing silicon carbide (SiC) crystal growth to 8-inch wafers, aligning with major international players in the industry. The company foresees the commencement of small-scale shipments of 8-inch SiC products in Q4 2024, with substantial growth expected in 2025, surpassing the proportion of 6-inch wafers by 2026.
Accourding to CTEE, Doris Hsu, Chairwoman of GlobalWafers, shared that the yield for 8-inch SiC crystal growth has been excellent, with ample room for further expansion, currently exceeding 50%.
The company emphasizes its readiness with 8-inch SiC crystal growth, cutting, grinding, and polishing capabilities, with sample deliveries set for the first half of next year.
Hsu highlighted customers’ eagerness for GlobalWafers to expedite the transition from 6-inch to 8-inch SiC production, aiming for an “8-inch dominant, 6-inch secondary” approach. The increasing demand for 8-inch SiC is primarily driven by automotive customers.
In terms of technology, SiC is moving from 6-inch to 8-inch wafers due to increased demand. TrendForce’s insights indicated, “Currently, the silicon carbide industry is mostly using 6-inch wafers, accounting for nearly 80% of the market share, while 8-inch wafers make up less than 1%. Expanding the wafer size to 8 inches is considered crucial for further reducing the cost of silicon carbide devices.”
From a cost perspective, 8-inch wafers indeed offer substantial advantages, but the challenge of yield has consistently plagued SiC. TrendForce’s earlier research suggests that, when it reaches maturity, an 8-inch wafer’s selling price is approximately 1.5 times that of a 6-inch wafer, and the number of die an 8-inch wafer can produce is about 1.8 times that of a 6-inch SiC wafer, significantly improving wafer utilization.
While GlobalWafers currently manufactures SiC substrates in Taiwan, the future SiC epitaxy will take place in the United States, with plans to expand with two additional substrate and two additional epitaxy facilities.
The production of SiC crystals involves high-temperature and closed-environment growth, which demands meticulous furnace design and crucible material selection, adding complexity to equipment and operations.
GlobalWafers has designed and developed specialized SiC crystal growth furnaces, enhancing material quality control and lowering crystal growth costs. SiC’s high hardness and brittleness make wafer processing challenging, but GlobalWafers employs higher process accuracy and more efficient wafer handling methods to achieve ultra-thin SiC wafer processing.
(Image: GlobalWafers)