Automotive Technologies


2023-07-27

China’s Auto Price War: Samsung MLCC Dominates Chinese Orders with Low Prices

China’s Automotive Price War Rages On: Some automakers have been gradually reclaiming outsourced orders for the battery, motor, electronic control system since May and June, shifting towards in-house production. Recently, they have asked suppliers to requote for second-half orders, with Samsung, Murata, Taiyo Yuden, PSA and Yageo actively vying for contracts.

Due to the more stringent certifications in the automakers’ supply chain compared to tier 1 suppliers, the majority of battery, motor, electronic control system MLCC suppliers still come from Taiwan, Japan, and Korea. Among them, Korean manufacturer Samsung has made significant progress in the Chinese automotive market this year. They have been actively providing sample for certifications and competitive pricing, securing a large share of orders and displacing Japanese manufacturers Murata and TDK, who had long held the lead.

Ongoing negotiations between automakers are expected to conclude with finalized orders by the end of August. According to the channel check from TrendForce, it appears that Samsung will maintain its leading position with a low-price strategy, while Murata, unwilling to be drawn into a price war reminiscent of consumer electronics, will remain conservative with pricing to secure a substantial market share. Taiyo Yuden, PSA and Yageo, though limited in automotive product offerings, have been proactive in their bidding efforts and have secured several orders.

(Photo credit: Yageo)

2023-07-26

Automotive Panels Embrace TDDI for Size and Spec Improvements

As the pandemic has eased, the global automotive market is picking up momentum, and it is estimated that the global shipments of automotive panels will exceed 200 million units in 2023. With the continuous demand for size enlargement and specification improvement in automotive panels, the adoption of TDDI architecture is becoming more prevalent, and it is expected that TDDI will gradually become the mainstream for automotive panels.

On the other hand, AMOLED panels have started to have opportunities for adoption in emerging electric vehicles and some high-end car models. However, their adoption has been slow due to potential issues with reliability, lifespan, and brightness. Currently, the overall penetration rate for AMOLED panels in the automotive sector is estimated to reach 6% by 2026.

Can Panel Manufacturers Replace Traditional Tier 1 Players and Directly Serve Automakers?

As traditional internal combustion engine vehicles transition to electric vehicles and the level of in-car electronics continues to rise, coupled with the development of autonomous driving technologies, the demand for automotive displays is constantly expanding. The integration of digital display panels with touch functionality is gradually becoming mainstream, and panel sizes are increasing, moving towards more integrated designs. Specifications such as resolution, wide viewing angles, and high refresh rates, as well as unique designs, are becoming focal points. Currently, display panel specifications are moving towards LTPS LCD panels, which offer larger sizes, superior display performance, and better energy efficiency.

Looking at the market conditions, after the outbreak of the pandemic in 2020, the demand for automotive panels declined, but it gradually recovered in 2021 and 2022. However, there is still an oversupply situation, and it is estimated that there will be a slight growth of 5.1% to reach 205 million units in 2023. In terms of shipment scale, China’s panel shipments maintain the best position with a share of over 40%, while Japanese panel manufacturers have been squeezed by Chinese counterparts, reducing their share to about 20%. Taiwan’s panel manufacturers account for approximately 21%, and Korean panel manufacturers represent 8%.

The traditional shipment model involves Tier 1 players contracting with car manufacturers for related validation, assembly, and supply chain management roles, and then subcontracting Tier 2 panel suppliers. With the transformation of the automotive industry and the semiconductor component shortages in the past few years, as well as the increased requirements for interior design in vehicles, car manufacturers are starting to seek better control over the supply chain. As a result, panel manufacturers may replace Tier 1 players and directly supply to automakers, and Tier 1 suppliers will face competition from panel manufacturers.

The Automotive TDDI Architecture Has Cost Advantages

In the early days, LCD automotive panels mainly used external touch solutions, with car-use DDI and independent touch ICs on the IC architecture. However, as panel sizes increased, the number of ICs used also increased, leading to higher costs. Therefore, the TDDI architecture became a new development direction.

TDDI is commonly used for panels up to 30 inches in size. A single TDDI solution can be used for 20-inch panels, while for 20-30 inch panels, a TDDI-cascade solution with approximately 2-3 TDDI-cascade architectures is often used. Panels larger than 30 inches use the LTDI (Local TDDI) structure.

 

New Display Technology Awaits Automotive Certification; Significant Growth Expected after 2025

AMOLED is mostly used in high-end car models or stylish new electric vehicles, but its rapid development is hindered by limitations in brightness, panel lifespan, and reliability. In comparison, LCDs with MiniLED BLU architecture offer similar display performance to AMOLED but at a more affordable price and with better safety, and they are expected to compete with AMOLED in the market.

For more information on this report or market data from TrendForce’s Department of Display Research, please click here, or email Ms. Grace Li from the Sales Department at graceli@trendforce.com

2023-07-13

Analysis of Reasons Behind Reports of Layoffs at Tesla’s Shanghai Factory

Tesla’s Shanghai factory has reportedly initiated layoffs among its battery assembly workforce. Industry sources suggest that the majority of the layoffs will affect employees in the first phase of battery assembly, with the reduction expected to exceed 50%. While most of the affected individuals will be offered compensation through negotiations, a small number will be reassigned to other positions. Additionally, the equipment in the first phase of battery assembly will either be dismantled or relocated.

From a production capacity standpoint, Tesla’s Shanghai factory currently operates at a capacity of approximately 100,000 vehicles per month. In order to maintain product scarcity and brand image, the output is expected to be controlled within the range of 75% to 85%.

According to TrendForce’s understanding, the layoffs in the first phase of battery assembly are expected to be related to US government policies. The US government has imposed restrictions on subsidizing batteries imported from China and requires the use of locally manufactured batteries. As a result, export orders for batteries from Tesla’s Shanghai factory have been cut, leading to excess production capacity. Tesla, known for its efficiency-driven corporate culture, is intolerant of resource wastage.

On another note, the reduction in capacity and production volume of the first phase of battery assembly by Tesla may indicate preparations for transferring some of the capacity to the United States. By completing the battery pack manufacturing process in the United States, Tesla aims to increase the proportion of the value chain related to battery production in the US, in order to qualify for the full subsidy of USD 7,500 per vehicle in the United States.

(Photo credit: Tesla)

2023-07-11

EVs to Uncover the Gold Mine for High-Value PCBs

From foundational propulsion systems to cutting-edge autonomous driving, new technologies in modern electric vehicles(EVs) are increasingly leaning on advanced PCBs.

In a state-of-the-art electric vehicle, chips on PCB control a broad range of functions from safety alerts to convenience systems. As additional components like communication, camera, sensor, and battery charging modules join the network, the collective value of PCB is set to rise dramatically.

TrendForce’s study suggests that electric vehicle penetration was at 18% of the global vehicle sales of 80.98 million in 2022. By 2026, it’s estimated to climb to 41% of 92.85 million global vehicle sales. This surge is expected to propel automotive PCB production value from $9.2 billion in 2022 to $14.5 billion in 2026, a 12% CAGR.

Notably, it’s not just quantity but also the average value per vehicle that’s seeing significant growth in PCB use. The rising battery capacity continues to drive PCB usage growth. The average PCB value for an all-electric vehicle is estimated to be a hefty 5 to 6 times that of a traditional gas-powered car. Key contributors to this are Battery Management Systems (BMS) and autonomous driving systems, which are greatly enhancing the overall worth of automotive PCBs.

BMS Embraces FPC as Standard

The electric control system, which makes up over half the value of a vehicle’s PCB, is now experiencing a technical transformation. One of the significant factors affecting the widespread adoption of EVs has been ‘range anxiety.’ Beyond enhancing battery energy density and increasing charging infrastructure, there’s a critical objective to lighten vehicles.

This focus is particularly relevant to the battery, which comprises a third of an electric vehicle’s weight.

In the key BMS systems, the use of FPCs (Flexible Printed Circuits) to replace traditional wiring harnesses is considered a major solution, mainly because FPCs reduce weight and space usage by more than 50% compared to harnesses and also perform better in terms of heat dissipation and design flexibility.

Based on a rough estimate, a mainstream vehicle battery pack requires 7 to 12 battery modules, each including 1 to 2 FPCs, putting the overall value of FPCs at approximately $60 to $210.

Currently, FPCs have a penetration rate of about 20% in BMS. However, as major automotive battery manufacturers like Tesla, CATL, and BYD continue to adopt and set FPCs as the mainstream specification, it is expected that by 2026, the proportion of FPC usage will reach 80%, further enhancing the PCB value content in the electrical control system.

Autonomous Vehicles to Fuel the HDI Demand

Advancements in autonomous driving technology are leading to an increased need for PCBs due to the rise in in-vehicle cameras and radar. Key applications like millimeter-wave radars and LiDAR necessitate advanced PCBs as carriers.

It is said that Tesla may reintroduce millimeter-wave radar, highlighting that this technology remains an indispensable component of autonomous vehicles. The PCB layer count for mainstream 77GHz millimeter-wave radar reaches 8 layers, adopting high-frequency CCLs.

The precision of LiDAR is about ten times that of millimeter-wave radar, which allows for accurate 3D modeling of information about the external environment of the vehicle, hence it is mainly used in L3 and above-level vehicles.

LiDAR primarily uses HDI (High-Density Interconnector), with each LiDAR module requiring about 4 PCBs. Compared to traditional 4 to 8-layer in-vehicle PCBs, the price of HDI is more than three times higher.

For Level 3 and above autonomous systems fitted with LIDAR, the HDIs used can cost tens of dollars. Although LiDAR’s adoption rate is currently slow due to regulatory and technical barriers, its high value offers significant potential for related components.

Another emerging trend is the development of smart cockpits, which comprise the Cockpit Domain Controller (CDC), in-vehicle infotainment system, driver information display system, Head-Up Display (HUD), dashcam, and so on. As the functions become more complex, there is a need for PCBs with higher wiring density and narrower line width and spacing, which will further drive the demand for HDI boards.

In summary, the incorporation of high-value PCBs in both the BMS and autonomous driving systems is still in its infancy. As cars become more intelligent and aim to serve as a ‘third living space,’ we can expect more innovative applications in the automotive industry, thereby providing exciting opportunities for the PCB sector.

2023-07-03

Can Toyota Overtake in the New Energy Vehicle Race with Solid-State Batteries?

Toyota announced during a technical conference on June 13, 2023, that Toyota has identified suitable materials to commercialize solid-state battery technology around 2027-2028, intending to introduce new energy vehicles powered by these batteries to the market.

Out of the 2.17 million electric vehicles (including BEV, PHEV, HEV, FCV) sold by Toyota in 2022, BEVs accounted for less than 1%, indicating a significant lag behind its competitors in the BEV sector. However, Toyota possesses over 100 solid-state battery patents and showcased a solid-state battery prototype as early as 2020, finally catching up in the solid-state battery race.

According to TrendForce’s analysis, current new energy vehicles primarily use nickel-cobalt-manganese (NCM) or lithium iron phosphate (LFP) as cathode materials, and graphite as anode material. NCM batteries offer higher energy density, with a system limit of around 250-260Wh/kg, but come with higher costs and a risk of thermal runaway. On the other hand, although LFP batteries are safer, less prone to thermal runaway, and more cost-effective, their energy density is significantly lower than that of NCM, with a system limit of approximately 160-170Wh/kg.

To achieve energy densities surpassing 300Wh/kg and reaching the 400-500Wh/kg target, lithium batteries will primarily focus on adjusting anode materials in the future. This includes incorporating higher-capacity materials such as silicon oxide, silicon carbon, or metallic lithium to increase the capacity of individual battery cells. However, using these high-activity anode materials in combination with traditional liquid electrolytes carries a higher risk of triggering thermal runaway during the charging and discharging processes.

In contrast, solid-state electrolytes provide structural stability, effectively preventing short circuits in batteries. By removing the separator film, solid-state batteries achieve a more compact size and higher energy density compared to liquid lithium batteries. In summary, solid-state batteries solve the challenge of balancing safety and energy density that traditional lithium batteries face, making them the most promising battery solution for future new energy vehicles.

However, during the development of solid-state battery technology, Toyota encountered an increase in interface impedance and a decrease in electrode-electrolyte adhesion due to the transition from liquid to solid electrolytes. These issues lead to battery capacity decline and affect cycle life, posing one of the many technical challenges in the current development of solid-state batteries.

Considering the difficulties involved, some battery manufacturers have shifted their focus to semi-solid-state batteries, such as CATL and Welion. Given Toyota’s current reliance on Chinese liquid battery technology for their development of solid-state batteries, it seems like a formidable task to achieve a breakthrough. Even if they overcome these challenges, the ability to replicate the success from the lab to actual vehicles remains uncertain.

Nevertheless, considering Toyota’s current situation, it may be more reasonable to place their bet on solid-state batteries rather than persistently chasing after the liquid battery sector. Although this strategic move carries high risks, it represents Toyota’s best and potentially last opportunity for overtaking competitors in the new energy vehicle field.

(Photo credit: Toyota Motor Corporation)

  • Page 23
  • 29 page(s)
  • 143 result(s)

Get in touch with us