Emerging Technologies


2023-05-18

The Investment Surge: China’s PMIC Industry Revs Up

Under the grand banner of China’s domestic substitution policy, the wave of locally produced chips is swiftly spreading to the realm of Power Management ICs (PMICs).

Over the past three years, the number of fundraisings for Chinese PMIC manufacturers has shot up. We’ve seen an increase from 18 rounds in 2020 and 19 rounds in 2021 to a whopping 24 rounds in 2022 – a substantial leap from the figures in 2018 and 2019.

Looking at the number of IPO last year, 23 Chinese automotive-grade chip companies went public, with another 25 poised to follow suit. Among these 48 automotive chip firms, 12 boast PMICs, making it the largest product sector in these investments.

New Energy Vehicles Fuel China’s PMIC Market

Both the data points signal a golden era for Chinese PMIC industry, with the new energy vehicles(NEV)emerging as a key driving force.

Compared to traditional vehicles with internal combustion engines, NEV requires a greater number of PMICs, like DC/DC converters, to manage voltage conversions. This, in turn, propels overall PMIC growth. From 2021, automotive PMICs have entered a phase of rapid growth. TrendForce forecasts that the scale of automotive PMICs will reach $7.65 billion by 2023, marking a year-on-year growth of 4.2%.

Government’s subsidy incentives and a booming domestic demand for NEV are the primary reasons for nudging the Chinese semiconductor industry to embrace PMICs more quickly. This trend aligns perfectly with the growth trajectory of China’s power semiconductors.

Chinese Manufacturers Plant Flags in Automotive PMICs

Over the past year, several domestic PMIC manufacturers, including SG Micro, Etek, Shanghai Belling, and Halo Micro, have rolled out automotive-grade PMICs. Some of these chips have even entered mass production and are being adopted by domestic vehicle bands.

Foundries are equally keen to seize the golden opportunity. For instance, GTA Semiconductor has successfully raised over 10 billion yuan in recent years. The company has earmarked a portion of the funds specifically for the R&D of automotive-grade PMIC.

However, the opportunities come with their fair share of challenges. New entrants must navigate stringent automotive certifications, ensure product resilience across extreme temperature ranges from -40°C to 125°C, guarantee a product lifespan exceeding ten years, and manage prolonged validation cycles. These demanding requirements significantly raise the entry barriers for newcomers.

On a global scale, international IDM giants like Infineon, NXP, TI, and Renesas are well entrenched in the PMIC sector, boasting a diverse range of products. In contrast, Chinese PMICs supply chain are just off the starting blocks of the race. To gain trust from customers, expand their product portfolio, and penetrate the global market, they are bound to confront a succession of hurdles, which will persistently scrutinise the enduring R&D capabilities and business strategies of each manufacturer.

2023-05-16

Competitors Turn Partners: Exploring Tesla and BYD’s Collaboration

Tesla, the world’s leading electric vehicle (EV) manufacturer, has announced its collaboration with BYD, a leading player in the EV and battery industry. The partnership involves Tesla incorporating BYD’s lithium iron phosphate (LFP) blade batteries into the rear-wheel-drive entry-level version of the Model Y, which will be produced at Tesla’s Berlin factory in Germany. Deliveries of this model are slated to commence in June 2023. Let’s delve into the significance of this collaboration from the perspectives of both Tesla and BYD.

Tesla’s Perspective

Tesla’s Berlin factory has thus far been responsible for manufacturing the premium variant of the Model Y, equipped with Panasonic’s 21700 lithium-ion batteries. In contrast, the entry-level version of the Model Y had been imported from Tesla’s Gigafactory in Shanghai, China, with CATL’s LFP batteries installed.

With this collaboration, Tesla will now produce the entry-level Model Y directly at its Berlin factory, integrating BYD’s LFP blade batteries with a capacity of 55 kWh. This battery configuration will offer an approximate range of 440 kilometers. Although this variant features a reduced capacity of 5 kWh compared to the CATL battery-equipped Model Y, the BYD LFP blade batteries boast improved energy density. This enhancement results in an increased range per kilowatt-hour, from 7.6 km/kWh to 8 km/kWh.

Additionally, the adoption of BYD’s blade batteries provides Tesla with cost advantages. The blade batteries employ cobalt- and nickel-free battery materials, which are more affordable. Consequently, Tesla stands to save approximately $750 in battery pack costs when considering a battery cost of $150 per kilowatt-hour. Moreover, the square-shaped design of the blade batteries enables tighter and more efficient packaging, leading to higher energy density. This design also facilitates Tesla’s integration of Cell to Chassis (CTC) technology, which reduces packaging material usage and overall costs.

Considering these factors, the decision to utilize BYD’s blade batteries aligns with the cost-effective preferences of the entry-level Model Y’s target consumer group while fulfilling Elon Musk’s commitment to cost control.

BYD’s Perspective

In 2022, BYD overtook Tesla as the world’s largest EV manufacturer, boasting sales of 1.86 million electric vehicles. As a result, BYD’s market share in battery assembly has steadily increased, owing to its self-supply capabilities. As of the first quarter of 2023, BYD stands as the second-largest global supplier of power batteries, with a market share of 16.2%, surpassed only by CATL’s 35%.

Despite BYD’s remarkable growth in the electric vehicle sector, its battery production capacity initially struggled to keep pace. This resulted in a period during which BYD could only fulfill its own demand and was unable to export batteries, impeding the growth of its battery business in terms of customer quantity.

Apart from its use in BYD’s own EVs and the recent collaboration with Tesla for the Model Y, BYD’s batteries primarily find application in Changan Ford vehicles. Furthermore, a staggering 98% of BYD’s electric vehicle sales currently originate from the domestic Chinese market. This high market concentration poses the dual risks of relying excessively on a single market and a single customer for battery sales.

BYD’s inclusion in Tesla’s supply chain with its blade batteries marks a significant step toward diversifying sales risks. Nevertheless, for BYD to maintain its position as the second-largest battery supplier in the future, the company will need to adopt a proactive and diversified market strategy, expanding its presence in the supply chains of various automakers.

(Photo credit: Tesla)

2023-05-09

Onsemi’s Aggressive Expansion in SiC Market Catches Competitors by Surprise

Onsemi, a semiconductor manufacturer, announced at the end of April that it had signed a Long-Term Supply Agreement for SiC power components with Zeekr, a subsidiary of Geely Auto Group. Geely Automotive will use Onsemi’s EliteSiC power components to optimize energy conversion efficiency in its electric drive system. This move signals Onsemi’s aggressive expansion in the automotive SiC market, catching up to leading manufacturers STMicroelectronics and Infineon.

In the SiC semiconductor market for electric vehicles, STMicroelectronics and Infineon have maintained their market leadership by entering the market early, while Wolfspeed and ROHM have gained traction through their vertical integration technology for SiC. On the other hand, Onsemi still lags behind in terms of market share for SiC power semiconductors, even though it acquired GT Advanced Technologies in 2021 and mastered the most difficult wafer growth and production equipment technology in SiC manufacturing. Before 2023, Onsemi was only used in small and medium-sized vehicle models such as NIO and Lucid.

However, Onsemi’s benefits begin to materialize in 2023, thanks to the industry maturity built by early players such as Infineon and STM, combined with Onsemi’s early deployment of SiC-related technology. Onsemi’s SiC product EliteSiC has obtained LTSA from Zeekr, BMW, Hyundai and Volkswagen in the form of discrete and modules. Its CEO, Hassane El-Khoury, has stated that the SiC business will generate $4 billion in revenue over the next three years compared to the total revenue for the 2022 SiC market of approximately $1.1 billion. These factors have made Onsemi the most talked-about semiconductor company in the SiC market this year.

However, the intense competition in the SiC market will test the endurance of resource input sustainability. The rapid growth in SiC demand over the past five years is mainly due to high battery costs and the development of energy density having reached its limit. Car manufacturers have switched to using SiC chips in their electronic components to increase driving range without increasing the number of batteries.

As a result, car manufacturers are aggressively pushing semiconductor companies to accelerate their research and development of SiC technology. This has resulted in a significant reduction in R&D time, but also an increase in R&D costs. Coupled with the impact of intense market competition on profits, the ability to sustain R&D resource input and overall profitability performance will be the key indicators of semiconductor companies’ competitiveness.

Onsemi has successfully improved its profitability performance by streamlining its product lines over the past few years, ranking at the top with a 49% gross margin, according to the financial reports of various semiconductor companies in 2022. This profitability performance allows Onsemi to meet car manufacturers’ cost requirements and secure orders, thereby achieving economies of scale in SiC product growth.

However, in terms of R&D costs as a percentage of revenue, Onsemi ranks last at 7%, compared to its main competitors Wolfspeed (26%), Infineon (13%), STM (12%), and ROHM (8%). With semiconductor companies investing more in technologies such as reducing on-resistance and improving yield rates, how to maintain a balance between profitability performance and resource expenditure while achieving revenue goals through intense market competition will be an important challenge for Onsemi after securing orders from car manufacturers.

(Source: Zeekr)

2023-05-08

China’s Pivot: Tech Giants Seek Self-Sufficiency Amid US Chip Ban

The US ban on Chinese industries has left China struggling with a seemingly severe shortage of chips. However, China’s tech giants refuse to surrender; instead, they’re pivoting quickly to survive the game.

Since 2019, the US Department of Commerce has added Chinese leading companies like Huawei to its entity list. Restrictions were expanded in 2020 to include semiconductor manufacturing, making a huge impact on SMIC’s advanced processes below 14nm.

Starting in 2021, the US has been intensifying its control by placing more IC design houses on the list, which include Jingjia (GPU), Shenwei (CPU), Loongson Tech (CPU), Cambricon (AI), Wayzim (RF&GPS), and Yangtze (NAND Flash). Furthermore, the export of advanced EDA tools, equipment, CPUs, and GPUs to China has also been banned.

The goal of such measures is to hinder China’s progress in high-tech fields such as 5G/6G, AI, Cloud computing, and autonomous driving by eroding the dominance of its tech giants over time.

China has been aggressively pursuing a policy of domestic substitution in response to the US’s increasing control. As part of this effort, leading domestic IC design companies like Horizon, Cambricon, Enflame, Biren, Gigadevice, and Nations Technologies have been ramping up their efforts for comprehensive chip upgrades in a variety of applications.

Chinese Brands Ramping up for ASICs

There is a particularly intriguing phenomenon in recent years. Since 2019, China’s leading brands have been venturing into chip design to develop highly specialized ASICs (Application Specific Integrated Circuits) at an unprecedented speed. This move is aimed at ensuring a stable supply of chips and also advancing their technical development.

A closer look at how top companies across diverse application fields integrate ASIC chips into their technology roadmap:

  • AI Cloud computing: Alibaba, Baidu, Tencent

China’s tech giants are leveraging advanced foundry processes, such as TSMC’s 5nm and Samsung’s 7nm, to produce cutting-edge AI chips for high-end applications like cloud computing, image coding, AI computing, and network chips.

Alibaba launched its AI chip, Hanguang 800, and server CPU, Yitian 710, in 2019 and 2021, respectively. Both chips were manufactured at TSMC’s 5nm process and are extensively used on Alibaba’s cloud computing platform.

In December 2019, Baidu released its AI chip, Kunlun Xin, which uses Samsung’s 14nm process, followed by its 2nd generation, which uses a 7nm process, for AI and image coding.

  • Smartphone: Xiaomi, Vivo, OPPO

Due to the high technical threshold of SoC technology used in smartphones, mobile phone brands mainly develop their own chips by optimizing image, audio, and power processing.

In the year of 2021, Xiaomi released the ISP Surge C1, followed by the PMIC Surge P1. Vivo first released the ISP V1 in September 2021, followed by an upgraded product, V1+, in April 2022, and then V2 in November 2022.
OPPO, on the other hand, unveiled the MariSilicon X NPU in December 2021, which enhances the image processing performance of smartphones, using TSMC’s 6nm process, and later revealed the MariSilicon Y Bluetooth audio SoC TSMC’s 6nm RF process later in 2022.

  • Home appliance: Konka, Midea, Changhong, Skyworth

The brands are focusing primarily on MCU and PMIC chips that are essential to a wide range of home appliances. They’re also incorporating SoC chips into their smart TVs.

For example, Hisense has jumped into the SoC game in January 2022 by releasing an 8K AI image chip for their smart TVs. Changhong manufactured an MCU with RISC-V architecture and a 40nm process in December 2022.

  • Autonomous driving: NIO, Xiaopeng, Li Auto, BYD

The leading companies are developing ISP and highly technical SoC chips for autonomous driving, which has resulted in a slower development process.

In 2020, NIO formed a semiconductor design team for Autonomous driving chips and ISP. Xiaopeng started its Autonomous driving and ISP chip R&D project in the first half of 2021. Li Auto established two subsidiaries in 2022, with a primary focus on power semiconductors and ISP chips.

Finally, BYD, which has a long history of working on MCU and power semiconductor components, also announced its entry into the autonomous driving chip market in 2022.

Navigating the US’ Tech Crackdown

So why are these brands investing so heavily in self-developed ASICs?

One reason is to avoid the risks associated with export control policies from the US and its allies. Developing their own chips would mitigate the risk of supply chain disruptions caused by potential blockades, ensuring a stable supply and the sustainability of their technology roadmap.

In addition, there are many internal incentives for these brands – for instance, companies that have self-developed chips will be eligible for more government subsidies, as this aligns with the government’s aggressive policy to foster the semiconductor industry. Brands can also reduce their reliance on external suppliers by using their own ASIC chips, which can further lower the operating costs.

Technology wise, ASIC chips allow brands to enhance the features they require and enable better integration with the software, which could provide efficiency gains at system level – similar strategies are also being employed by Google and AWS with their AI chips, as well as by Apple with its M1 SoC.

With all things considered, it is certainly possible that we will see a persistent trend of more self-developed ASIC chips made by Chinese brands, which could potentially lead to significant changes in China’s semiconductor supply chain from the ground up.

2023-05-03

Chinese Players Rally for Demand Surge in MOSFET, IGBT, and SiC

Chinese semiconductor companies are once again quickly making their presence known in the power semiconductor market, particularly in the fields of MOSFET, IGBT, and SiC.

Among various types of power ICs and power devices, MOSFET and IGBT-based voltage-controlled switching devices have become the mainstream products, accounting for more than 70% of power devices due to their ease of use, fast switching speed, and low power loss. They are mainly used in end markets such as automobiles, industry, and consumer electronics.

On the other hand, SiC can further assist in breakthroughs in EV technology and has become the most popular alternative technology route in the market, with its strong material properties such as low resistance, high temperature resistance, and high voltage resistance.

From IGBT and MOSFET to SiC, there has been a surge in demand in recent years, indicating the enormous growth potential of power semiconductors for automotive use. This has attracted many Chinese players to enter the competition.

IGBT: Explosive Growth for Chinese Players

As the core component of new energy vehicles, demand for IGBT is increasing. Looking at the financial reports of overseas large factories, the top five IGBT chip manufacturers in Q1 of this year still face tight delivery times, with the longest reaching 54 weeks.

The rapid growth of the EV and energy storage markets has resulted in a supply-demand imbalance for SiC MOSFETs. Major international IDM factories’ production capacity won’t be able to meet the demand in the coming years. Consequently, Infineon, STMicroelectronics, and ON Semiconductor are focusing on local supply in Europe and America. This has led to Chinese suppliers replacing automotive IGBTs for the domestic market.

In 2022, the IGBT industry in China saw a surge in demand. After a two-year auto chip shortage starting in 2020, the supply of IGBTs has become even tighter. In the second half of 2022, IGBT surpassed automotive MCU and became the biggest supply bottleneck affecting automotive production expansion.
According to the latest statistics from the China Association of Automobile Manufacturers, China’s new energy vehicles continued to explode in 2022, with production and sales reaching 7.058 million and 6.887 million vehicles, respectively, a year-on-year increase of 96.9% and 93.4%, maintaining the world’s first for eight consecutive years.

Many representative companies in China continue to strengthen their IGBT technology research and development:

  • In the first half of 2022, StarPower Semiconductor developed a new generation of 650V/750V IGBT chips for the new car standard based on the seventh-generation microgroove Trench Field Stop technology, which passed customer verification and began mass production in the second half of 2022.
  • Silan is keeping up with the trend of new energy development and has entered the field of vehicle-grade IGBT modules and SiC MOSFETs through a private placement financing. Its vehicle-grade IGBT and other products have been verified and have been delivered in bulk.

Since the end of 2021, the IGBT capacity of companies such as CRRC Times Electric, Silan, and Huahong Grace has been ready, and their revenue has also been rising. Combining the data of major companies with revenue exceeding 10 billion yuan that have released their 2022 financial reports, the power device companies are CRRC Times Electric, with 18.034 billion yuan, and Hua Run Micro, with 10.06 billion yuan.

MOSFET: Demand Doubles with the Rise of EVs

MOSFETs are used in high-voltage applications, such as DC-DC and OBC, to convert and transmit electrical energy. On average, there are now over 200 MOSFETs per car. As cars become more advanced and incorporate features like ADAS, safety, and entertainment, the number of MOSFETs per car is expected to double to 400 in high-end models.
With major companies such as Renesas gradually withdrawing from the low and medium-voltage MOSFET market, Chinese players have been accelerating their entry into the automotive supply chain. Currently, companies such as Silan and Nexperia are continuously expanding their global market share of MOSFETs, while other companies such as China Resources Microelectronics, Yangjie Electronic, Good-Ark Electronics, Jilin Sino-Microelectronics, NCE Power Co, New Jie Energy, Oriental Semi and Jiejie Microelectronics have been continuously developing in the field of automotive-grade MOSFETs in recent years.

Chinese IDM companies have expanded their market share by offering high-voltage super junction products:

  • Silan has completed the development of a 12-inch high-voltage super junction MOS process platform.
  • China Resources Microelectronics has achieved revenue of over 100 million yuan in the first quarter of 2022 for high-voltage super junction products.
  • Yangjie Electronic has achieved a significant increase in MOS orders for automobiles in the first quarter of 2022.

SiC: Entire Supply Chain Enters the Game

The growth of EV and energy storage markets has been causing a supply shortage in SiC. As major international IDMs are expected to expand their SiC capacity and potentially engage in more M&A activities, Chinese manufacturers are simultaneously make more investments throughout SiC supply chain:

  • IDM: Sanan Optoelectronics, Inventchip, Silan, and Sichain are trying to transform the IDM model by improving their processes but face development obstacles.
  • Foundry: Besides Fabless manufacturers are participating in the SiC market, foundry companies such as X-FAB are also actively developing related businesses, especially Taiwanese manufacturers. After EPISIL Hong Young Semiconductor and ProAsia Semiconductor have also entered the market.

XinYueNeng a new foundry invested by Geely Auto, has also attracted market attention. Its related projects are expected to be put into operation in the second half of this year, and its partner AccoPower is already producing SiC power modules for vehicles.

It’s also important to note the development of the SiC specialized production equipment market. Some key equipment, such as the epitaxial reactor, is experiencing delivery delays, which may impact the expansion plans of suppliers like Tianyu Semiconductor and EpiWorld. On the positive side, it still presents great opportunities for local equipment manufacturers.

Read more:

  • Page 27
  • 34 page(s)
  • 169 result(s)