IC Manufacturing, Package&Test


2023-08-25

TrendForce Dives into NVIDIA’s Product Positioning and Supply Chain Shifts Post Earnings Release

NVIDIA’s latest financial report for FY2Q24 reveals that its data center business reached US$10.32 billion—a QoQ growth of 141% and YoY increase of 171%. The company remains optimistic about its future growth. TrendForce believes that the primary driver behind NVIDIA’s robust revenue growth stems from its data center’s AI server-related solutions. Key products include AI-accelerated GPUs and AI server HGX reference architecture, which serve as the foundational AI infrastructure for large data centers.

TrendForce further anticipates that NVIDIA will integrate its software and hardware resources. Utilizing a refined approach, NVIDIA will align its high-end, mid-tier, and entry-level GPU AI accelerator chips with various ODMs and OEMs, establishing a collaborative system certification model. Beyond accelerating the deployment of CSP cloud AI server infrastructures, NVIDIA is also partnering with entities like VMware on solutions including the Private AI Foundation. This strategy extends NVIDIA’s reach into the edge enterprise AI server market, underpinning steady growth in its data center business for the next two years.

NVIDIA’s data center business surpasses 76% market share due to strong demand for cloud AI

In recent years, NVIDIA has been actively expanding its data center business. In FY4Q22, data center revenue accounted for approximately 42.7%, trailing its gaming segment by about 2 percentage points. However, by FY1Q23, data center business surpassed gaming—accounting for over 45% of revenue. Starting in 2023, with major CSPs heavily investing in ChatBOTS and various AI services for public cloud infrastructures, NVIDIA reaped significant benefits. By FY2Q24, data center revenue share skyrocketed to over 76%.

NVIDIA targets both Cloud and Edge Data Center AI markets

TrendForce observes and forecasts a shift in NVIDIA’s approach to high-end GPU products in 2H23. While the company has primarily focused on top-tier AI servers equipped with the A100 and H100, given positive market demand, NVIDIA is likely to prioritize the higher-priced H100 to effectively boost its data-center-related revenue growth.

NVIDIA is currently emphasizing the L40s as their flagship product for mid-tier GPUs, meaning several strategic implications: Firstly, the high-end H100 series is constrained by the limited production capacity of current CoWoS and HBM technologies. In contrast, the L40s primarily utilizes GDDR memory. Without the need for CoWos packaging, it can be rapidly introduced to the mid-tier AI server market, filling the gap left by the A100 PCle interface in meeting the needs of enterprise customers.

Secondly, the L40s also target enterprise customers who don’t require large parameter models like ChatGPT. Instead, it focuses on more compact AI training applications in various specialized fields, with parameter counts ranging from tens of billions to under a hundred billion. They can also address edge AI inference or image analysis tasks. Additionally, in light of potential geopolitical issues that might disrupt the supply of the high-end GPU H series for Chinese customers, the L40s can serve as an alternative. As for lower-tier GPUs, NVIDIA highlights the L4 or T4 series, which are designed for real-time AI inference or image analysis in edge AI servers. These GPUs underscore affordability while maintaining a high-cost-performance ratio.

HGX and MGX AI server reference architectures are set to be NVIDIA’s main weapons for AI solutions in 2H23

TrendForce notes that recently, NVIDIA has not only refined its product positioning for its core AI chip GPU but has also actively promoted its HGX and MGX solutions. Although this approach isn’t new in the server industry, NVIDIA has the opportunity to solidify its leading position with this strategy. The key is NVIDIA’s absolute leadership stemming from its extensive integration of its GPU and CUDA platform—establishing a comprehensive AI ecosystem. As a result, NVIDIA has considerable negotiating power with existing server supply chains. Consequently, ODMs like Inventec, Quanta, FII, Wistron, and Wiwynn, as well as brands such as Dell, Supermicro, and Gigabyte, are encouraged to follow NVIDIA’s HGX or MGX reference designs. However, they must undergo NVIDIA’s hardware and software certification process for these AI server reference architectures. Leveraging this, NVIDIA can bundle and offer integrated solutions like its Arm CPU Grace, NPU, and AI Cloud Foundation.

It’s worth noting that for ODMs or OEMs, given that NVIDIA is expected to make significant achievements in the AI server market for CSPs from 2023 to 2024, there will likely be a boost in overall shipment volume and revenue growth of AI servers. However, with NVIDIA’s strategic introduction of standardized AI server architectures like HGX or MGX, the core product architecture for AI servers among ODMs and others will become more homogenized. This will intensify the competition among them as they vie for orders from CSPs. Furthermore, it’s been observed that large CSPs such as Google and AWS are leaning toward adopting in-house ASIC AI accelerator chips in the future, meaning there’s a potential threat to a portion of NVIDIA’s GPU market. This is likely one of the reasons NVIDIA continues to roll out GPUs with varied positioning and comprehensive solutions. They aim to further expand their AI business aggressively to Tier-2 data centers (like CoreWeave) and edge enterprise clients.

2023-08-25

[News] NVIDIA Establishes Non-TSMC CoWoS Supply Chain, UMC Doubles Interposer Capacity

According to a report from Taiwan’s Commercial Times, NVIDIA is aggressively establishing a non-TSMC CoWoS supply chain. Sources in the supply chain reveal that UMC is proactively expanding silicon interposer capacity, doubling it in advance, and now planning to further increase production by over two times. The monthly capacity for silicon interposers will surge from the current 3 kwpm (thousand wafers per month) to 10 kwpm, potentially aligning its capacity with TSMC’s next year, significantly alleviating the supply strain in the CoWoS process.

A prior report from Nomura Securities highlighted NVIDIA’s efforts since the end of Q2 this year to construct a non-TSMC supply chain. Key players include UMC for wafer fabrication, Amkor and SPIL for packaging and testing. NVIDIA aims to add suppliers to meet the surging demand for CoWoS solutions.

The pivotal challenge in expanding CoWoS production lies in insufficient silicon interposer supply. In the future, UMC will provide the silicon interposers for front-end CoW process, while Amkor and SPLI will take charge of the back-end WoS packaging. These collaborations will establish a non-TSMC CoWoS supply chain.

UMC states its current silicon interposer capacity stands at 3 kwpm. However, the company has decided to undertake a one-fold expansion at its Singaporean plant, targeting a capacity of around 6 kwpm. The additional capacity is anticipated to be progressively operational within 6 to 9 months, with the earliest projections for the first quarter of next year.

Yet, due to persistent robust market demand, it’s expected that even with UMC’s capacity expansion to 6 kwpm, it may not completely meet market needs. Consequently, industry sources suggest UMC has opted to further amplify silicon interposer capacity to 10 kwpm, aiming for a two-fold acceleration of production expansion. Addressing these expansion rumors, UMC affirms that growth in advanced packaging demand is an inherent trend and future focus, asserting their evaluation of capacity options and not ruling out the possibility of continuous enlargement of silicon interposer capabilities.

(Photo credit: Amkor)

2023-08-23

[News] TSMC Faces Capacity Shortage, Samsung May Provide Advanced Packaging and HBM Services to AMD

According to the Korea Economic Daily. Samsung Electronics’ HBM3 and packaging services have passed AMD’s quality tests. The upcoming Instinct MI300 series AI chips from AMD are planned to incorporate Samsung’s HBM3 and packaging services. These chips, which combine central processing units (CPUs), graphics processing units (GPUs), and HBM3, are expected to be released in the fourth quarter of this year.

Samsung is noted as the sole provider capable of offering advanced packaging solutions and HBM products simultaneously. Originally considering TSMC’s advanced packaging services, AMD had to alter its plans due to capacity constraints.

The surge in demand for high-performance GPUs within the AI landscape benefits not only GPU manufacturers like NVIDIA and AMD, but also propels the development of HBM and advanced packaging.

In the backdrop of the AI trend, AIGC model training and inference require the deployment of AI servers. These servers typically require mid-to-high-end GPUs, with HBM penetration nearing 100% among these GPUs.

Presently, Samsung, SK Hynix, and Micron are the primary HBM manufacturers. According to the latest research by TrendForce, driven by the expansion efforts of these original manufacturers, the estimated annual growth rate of HBM supply in 2024 is projected to reach 105%.

In terms of competitive dynamics, SK Hynix leads with its HBM3 products, serving as the primary supplier for NVIDIA’s Server GPUs. Samsung, on the other hand, focuses on fulfilling orders from other cloud service providers. With added orders from customers, the gap in market share between Samsung and SK Hynix is expected to narrow significantly this year. The estimated HBM market share for both companies is about 95% for 2023 to 2024. However, variations in customer composition might lead to sequential variations in bit shipments.

In the realm of advanced packaging capacity, TSMC’s CoWoS packaging technology dominates as the main choice for AI server chip suppliers. Amidst strong demand for high-end AI chips and HBM, TrendForce estimates that TSMC’s CoWoS monthly capacity could reach 12K by the end of 2023.

With strong demand driven by NVIDIA’s A100 and H100 AI Server requirements, demand for CoWoS capacity is expected to rise by nearly 50% compared to the beginning of the year. Coupled with the growth in high-end AI chip demand from companies like AMD and Google, the latter half of the year could experience tighter CoWoS capacity. This robust demand is expected to continue into 2024, potentially leading to a 30-40% increase in advanced packaging capacity, contingent on equipment readiness.

(Photo credit: Samsung)

2023-08-23

Malaysia: Rising Global Hub for Semiconductor Backend Testing and Packaging in Supply Chain Shift

As reported by TechNews, a media partner of TrendForce, Southeast Asia and India, equipped with the advantages of demographic dividends, strategic geographic positioning, manufacturing capabilities, and rapidly growing economic markets, have undoubtedly emerged as the preferred destinations for the technology industry amidst the global supply chain transition prompted by geopolitical factors.

As supply chains actively seek production bases beyond China and governments introduce incentive programs and policy restrictions for localized supply, various Southeast Asian countries have become key hubs for different sectors. Vietnam has become a focal point for consumer electronics manufacturing such as laptops, watches, and headphones, while Thailand has become a preferred choice for automotive-related supply chains. Thailand and Malaysia host assembly bases for servers, and India is set to become a crucial hub for mobile phone production.

Apart from the movement of end-product assembling, the shift in the semiconductor supply chain has also garnered attention. With TSMC, Samsung, and Intel relocating wafer fabrication plants to the United States, Europe, and other regions, a significant cluster of semiconductor backend testing and packaging has been forming in Malaysia.

What Advantages Does Malaysia Offer to Attract Multinational Semiconductor Companies’ Investment, and What Is the Current Industry Landscape?

Firstly, Malaysia boasts higher education standards than neighboring countries. Among ASEAN nations, only Singapore and Malaysia employ the British legal system, providing a competitive edge for many companies’ location choices. Secondly, in terms of language proficiency, Malaysian citizens predominantly use English, Mandarin, and Malay, facilitating smooth communication with global enterprises.

Thirdly, Malaysia is home to two major ports—Port Klang and Port of Tanjung Pelepas—both ranked among the world’s top 15 ports, with substantial container handling capacity and global reach.

Lastly, the state of Penang stands as a semiconductor hub for Malaysia, having nurtured the semiconductor industry for several decades and holding a technological lead. Often referred to as the “Silicon Valley of the East,” Penang has primarily focused on producing chips for electronics, computers, and mobile phones. However, with the growing adoption of electric vehicles, the demand for automotive chips has surged. Concurrently, the green energy trend has propelled the need for solar panels and renewable energy sources. This optimistic outlook for the semiconductor industry has once again attracted numerous companies to establish facilities and expand production capacity.

Current State of Malaysia’s Semiconductor Industry

Looking at the recent dynamics of corporations over the past two years, the trend is evident that Malaysia is evolving into a center for semiconductor backend testing and packaging. Major global players have announced plans to establish or expand operations in Penang. Intel, for example, announced a $6.46 billion investment in Malaysia in 2021, focusing on advanced packaging capabilities in Penang and Kedah.

Texas Instruments declared its intent to construct semiconductor testing and packaging plants in Kuala Lumpur and Malacca, with a total investment of up to $2.7 billion. Infineon is investing $5.45 billion to expand existing facilities, producing silicon carbide and entering the electric vehicle sector. Bosch Group is investing $358 million in stages to strengthen its semiconductor supply chain position in Penang. ASE Technology Holding, also began construction on a new testing facility in Penang at the end of last year.

With the influx of semiconductor giants, Malaysia’s position in the semiconductor industry has become increasingly critical. The distinct production base trends, aligned with the strengths of various Southeast Asian countries, have become clear. The restructuring of supply chains and the transformation of production centers undoubtedly remain the focus and challenge for global companies.

(Photo credit: ASE)

2023-08-22

TSMC’s CoWoS Dominance: Amkor, ASE, JCET’s Response

In response to the demands of high-performance computing, AI, 5G, and other applications, the shift towards chiplet and the incorporation of HBM memory has become inevitable for advanced chips. As a result, packaging has transitioned from 2D to 2.5D and 3D formats.

With chip manufacturing advancing towards more advanced process nodes, the model of directly packaging chips using advanced packaging technology from wafer foundries has emerged. However, this approach also signifies that wafer foundries will encroach upon certain aspects of traditional assembly and testing, leading to ongoing discussions about the ‘threat’ to traditional assembly and test firms since TSMC’s entry into advanced packaging in 2011.

But is this perspective accurate?

In fact, traditional assembly and test firms remain competitively positioned. Firstly, numerous electronic products still rely on their diverse traditional packaging techniques. Particularly, with the rapid growth of AIoT, electric vehicles, and drones, the required electronic components often still adopt traditional packaging methods. Secondly, faced with wafer foundries actively entering the advanced packaging domain, traditional assembly and test firms have not been idle, presenting concrete solutions to the challenge.

Advanced Packaging Innovations by Traditional Assembly and Test Firms

Since 2023, AI and AI server trends have rapidly emerged, driving the demand for AI chips. TSMC’s 2.5D advanced packaging technology, known as CoWoS, has played a pivotal role. However, the sudden surge in demand stretched TSMC’s capacity. In response, major traditional assembly and test firms such as ASE and Amkor have demonstrated their technical prowess and have no intention of being absent from this field.

For instance, ASE’s FOCoS technology enables the integration of HBM and ASIC. It restructures multiple chips into a fan-out module, which is then placed on the substrate, achieving the integration of multiple chips. Their FOCoS-Bridge technology, unveiled in May this year, utilizes silicon bridges (Si Bridge) to accomplish 2.5D packaging, bolstering the creation of advanced chips required for applications like AI, data centers, and servers.

Additionally, SPIL, a subsidiary of ASE, offers the FO-EB technology, a powerful integration of logic IC and HBM. As depicted below, this technology eschews silicon interposers, utilizing silicon bridges and redistribution layers (RDL) for connections, similarly capable of 2.5D packaging.

Another major player, Amkor, has not only collaborated with Samsung to develop the H-Cube advanced packaging solution but has also long been involved in ‘CoWoS-like technology.’ Through intermediary layers and through-silicon via (TSV) technology, Amkor can interconnect different chips, also possessing 2.5D advanced packaging capabilities.

China’s major assembly and test firm, Jiangsu Changjiang Electronics Technology (JCET), employs the XDFOI technology, integrating logic ICs with HBM through TSV, RDL, and microbump techniques, aimed at high-performance computing.

Given the recent surge in demand for high-end GPU chips, TSMC’s CoWoS capacity has fallen short, and NVIDIA is actively seeking support from second or even third suppliers. The ASE Group and Amkor have secured partial orders through their packaging technologies. This clearly illustrates that traditional assembly and test firms, even when faced with the entry of wafer foundries into the advanced packaging domain, still possess the capability to compete.

In terms of product types, wafer foundries focus on advanced packaging technology for major players like NVIDIA and AMD. Meanwhile, other products not in the highest-end category still opt for traditional assembly and test firms like ASE, Amkor, and JCET for manufacturing. Overall, with their presence in advanced packaging, as well as a hold on the expanding existing packaging market, traditional assembly and test firms continue to maintain their market competitiveness.

(Photo credit: Amkor)

  • Page 44
  • 52 page(s)
  • 258 result(s)

Get in touch with us