Semiconductors


2023-11-08

[News] Intel’s CEO Envisions Over One Hundred Million AI PC Shipments in Two Years

On November 7th, Intel held its “Intel Innovation Taipei 2023 Technology Forum”, with CEO Pat Gelsinger highlighting the healthy state of PC inventory. He also expressed optimism about the injection of several more years of innovative applications and evolution in PCs through AI. 

Intel Aims to Ship over One Hundred Million AI PC within the Next Two Years

Gelsinger expressed that the PC inventory has reached a healthy level, and he is optimistic about the future growth of AI PCs, which are equipped with AI processors or possess AI computing capabilities. He anticipates that AI will be a crucial turning point for the PC industry.

Additionally, Gelsinger stated that the server industry may have seemed uneventful in recent years, but with the accelerated development of AI, it has become more exciting. AI is becoming ubiquitous, transitioning from the training phase to the deployment phase, and various platforms will revolve around AI.

Gelsinger expressed his strong confidence in Intel’s position in the AI PC market, expecting to ship over one hundred million units within two years.

Intel’s Ambitious Expansion in Semiconductor Foundry Landscape

Intel is actively promoting its IDM 2.0 strategy, with expectations from the industry that the company, beyond its brand business, has advanced packaging capabilities to support semiconductor foundry operations. In the future, Intel is poised to compete with rivals such as TSMC and Samsung.

Gelsinger noted that some have viewed Intel’s plan of achieving five technical nodes in four years as “an ambitious endeavor.” However, he emphasized that Intel remains committed to its original goal of advancing five process nodes within four years.

The company’s foundry business has received positive responses from numerous potential customers, and while it may take three to four years for significant expansion, the advanced packaging aspect may only require two to three quarters to get on track.

This transformation marks a significant shift for the company, setting new standards in the industry. Intel is making steady progress in its four-year plan to advance five nodes, and Moore’s Law will continue to extend. The construction of Intel’s new factories is also ongoing.

According to Intel’s roadmap, Intel 7 and Intel 4 are already completed, Intel 3 is set for mass production in the latter half of this year, and Intel 20A and 18A are expected to enter mass production in the first and second halves of next year, respectively.

Regarding this roadmap, according to NIKKEI Asia’s report, Gelsinger also mentioned at the forum that for the 18A process, they currently have many test wafers in production. Additionally, the development of 18A has been completed, and it is progressing rapidly towards the production phase.

Read more

(Photo credit: Intel Newsroom)

2023-11-08

[News] ROHM’s First SiC Substrate Production in Japan, 8-Inch Substrates Set for 2024

During an earnings call in November 2023, Isao Matsumoto, President of ROHM Semiconductor, disclosed the company’s plans to the production of 8-inch SiC substrates at its second plant in Miyazaki, Japan, starting in 2024. This is the first time ROHM will produce SiC substrates in Japan.

Notably, the Miyazaki Plant No.2 Project is part of ROHM’s ongoing capacity expansion strategy. The company intends to invest between 170 and 220 billion yen in its SiC business from 2021 to 2025.

For SiC power semiconductor manufacturers like ROHM, it’s imperative to bolster their SiC substrate production capacity. This is driven by two key factors. Firstly, there has been a shortage of substrate materials, which has posed a challenge for the SiC power semiconductor industry. Secondly, the growing wave of electric vehicles has led to an increased demand for SiC power semiconductors.

To thrive in the SiC power semiconductor industry and capture a big market share, major companies are actively investing in expanding their production capacity. They often choose to form supply agreements with suppliers, set up their own production lines, or acquire related businesses.

ROHM previously established a pioneering position in the industry by producing SiC substrates at its plant in Nuremberg, Germany, following the acquisition of SiCrystal, a German SiC substrate manufacturer.

The Miyazaki plant no.2, scheduled to start production in 2024, was originally the Kunitomi plant of Solar Frontier, a subsidiary of Idemitsu Kosan. In July of this year, ROHM announced its acquisition of the assets of Solar Frontier’s former Kunitomi plant, a deal that concluded in October. It’s worth noting that this plant will become ROHM’s largest SiC power semiconductor production hub in Japan.

While pursuing acquisitions, ROHM is also actively expanding its in-house production capacity. According to information on ROHM’s official website, the company currently operates four SiC power semiconductor production plants in Japan, located at its Kyoto headquarters, Chikugo Plant in Fukuoka, Nagahama Plant in Fukuoka, and Miyazaki plant no.1.

Both acquisitions and in-house production strategies help ensure a reliable product supply. However, in the dynamic SiC industry, forward-thinking leaders are eager to secure additional production capacity in advance. Collaboration with established manufacturers is a common approach, and ROHM is no exception.

In June of this year, ROHM signed a long-term supply partnership agreement for SiC power devices with Vitesco. According to this agreement, the combined transactions between the two companies from 2024 to 2030 will exceed 130 billion yen.
(Image: ROHM)

2023-11-08

[News] China Jingsheng Launches 2.1 Billion CNY SiC Substrate Project Marks Significant Investment

On November 4th, the “Annual Production of 250k 6-inch and 50k 8-inch SiC Substrate Project” was officially initiated by China Jingsheng Mechanical & Electrical Co., Ltd. (JSG). It is driven by the objective of advancing crucial core technologies in semiconductor material development, ultimately leading to the establishment of a domestically produced alternative for China.

The total investment for this agreement reached an impressive 2.1 billion CNY. During the launch ceremony, Dr. Jianwei Cao, Chairman of JSG, underscored the pivotal role of this project in the company’s growth strategy.

JSG, founded in 2006 and headquartered in Zhejiang, China, made its debut on the Shenzhen Stock Exchange in 2012. The company specializes in developing essential semiconductor materials, including silicon, sapphire, and SiC. It provides equipment and services to the semiconductor and photovoltaic industries.

Since 2017, JSG has been deeply engaged in SiC ingot growth equipment and process development, achieving the successful production of 6-inch and 8-inch SiC ingots and substrates. The company is among the select few capable of supplying 8-inch substrates in China. They have successfully established a pilot line for the growth, slicing, and polishing of 6-8-inch SiC ingots. The 6-inch substrates have received validation from several downstream companies and are rapidly progressing, while the 8-inch substrates are in the small-scale trial production phase.SiC, as an iconic material for third-generation semiconductors, is renowned for its outstanding physical properties, rendering it suitable for various applications such as new energy vehicles, photovoltaic energy storage, data centers, 5G communication, and ultra-high-voltage (UHV). In recent years, there has been a sustained surge in demand for SiC due to its remarkable properties. However, the widespread commercialization of SiC has been hampered by cost-related challenges.

A cost analysis of the SiC industry reveals that substrate expenses account for approximately 40% of the overall costs, making it a pivotal aspect of cost reduction. The interest of leading companies in large-sized substrates is attributed to their higher utilization rates, contributing significantly to cost reduction.

GlobalWafers, the world’s third-largest silicon wafer manufacturer, plans to embark on large-scale production of advanced SiC substrates in 2025 to meet the surging demand for power semiconductors in the automotive sector. Doris Hsu, Chairman and CEO of GlobalWafers, recently announced that the company is set to commence qualification and test production of 8-inch SiC substrates in the upcoming year, with large-scale production slated for 2025.

On the other hand, SICC, a company also engaged in SiC substrates development, has expedited its capacity expansion in Shanghai Lin-gang Special Area, augmenting the production capacity for conductive substrates since 2022. They have been delivering products since May this year and anticipate a further rise in production capacity during the fourth quarter of 2023. The company is poised to achieve mass production ahead of schedule for the first-phase 300,000-piece capacity and has initiated plans for the second-phase 960,000-piece capacity for 6-inch SiC ingot.

While 6-inch conductive SiC substrate products dominate the market, 8-inch substrates are yet to become ubiquitous. However, SICC announced the development of high-quality 8-inch substrates in 2022. The company is now equipped for mass production of 8-inch products. Notably, during the 2023 Semicon, Dr. Chao Gao, CTO of SICC, disclosed the successful creation of low-defect-density 8-inch ingots using a liquid-phase method.

(Image: SICC)

2023-11-08

[News] Seizing the AI Trend! Revealing Samsung and Micron’s HBM Expansion Timetable

In a subdued environment for consumer electronic applications in the storage market, High Bandwidth Memory (HBM) technology is emerging as a new driving force, gaining significant attention from major players. Recent reports reveal that both Samsung and Micron are gearing up for substantial HBM production expansion.

Major Manufacturers Actively Investing in HBM

Recent reports indicate that Samsung has acquired certain buildings and equipment within the Cheonan facility of Samsung Display in South Korea to expand its HBM production capacity.

It is reported that Samsung plans to establish a new packaging line at the Cheonan facility for large-scale HBM production. The company has already spent 10.5 billion Korean won on the acquisition of the mentioned buildings and equipment, with an additional investment expected to range between 700 billion and 1 trillion Korean won.

Earlier, it was disclosed by Mr. Hwang Sang-jun, the Vice President of Samsung Electronics and Head of the DRAM Product and Technology Team, that Samsung has developed HBM3E with a speed of 9.8Gbps and plans to commence providing samples to customers.

Concurrently, Samsung is in the process of developing HBM4 with the objective of making it available by 2025. It is reported that Samsung Electronics is actively working on various technologies for HBM4, including non-conductive adhesive film (NCF) assembly techniques optimized for high-temperature thermal characteristics and hybrid bonding (HCB).

On November 6th, Micron Technology opened a new facility in Taichung. Micron has stated that this new facility will integrate advanced testing and packaging functions and will be dedicated to the mass production of HBM3E, along with other products. This expansion aims to meet the increasing demand across various applications such as artificial intelligence, data centers, edge computing, and cloud services.

Previously, Micron’s CEO, Sanjay Mehrotra, revealed that the company plans to commence substantial shipments of HBM3E in early 2024. Micron’s HBM3E technology is currently undergoing certification by NVIDIA. The initial HBM3E offerings will feature an 8-Hi stack design with a capacity of 24GB and a bandwidth exceeding 1.2TB/s.

Furthermore, Micron intends to introduce larger-capacity 36GB 12-Hi stacks HBM3E in 2024. In an earlier statement, Micron had anticipated that the new HBM technology would contribute “hundreds of millions” of dollars in revenue by 2024.

Shift Toward HBM3 Expected in 2024

According to TrendForce, the current mainstream technology in the HBM market is HBM2e. This specification is utilized by prominent players like NVIDIA with their A100 and A800, AMD with the MI200 series, and various custom system-on-chip designs by CSPs.

Simultaneously, in response to the evolving demand for AI accelerator chips, many manufacturers are planning to introduce new products based on HBM3e technology in 2024. It is anticipated that both HBM3 and HBM3e will become the dominant technologies in the market next year, catering to the requirements of AI accelerator chips.

Regarding the demand for different generations of HBM, TrendForce believes that the primary demand is shifting from HBM2e to HBM3 in 2023, with an anticipated demand ratio of approximately 50% and 39%, respectively. As the usage of HBM3-based accelerator chips continues to increase, the market demand is expected to see a substantial shift towards HBM3 in 2024.

It is anticipated that in 2024, HBM3 will surpass HBM2e, with an estimated share of 60%. This transition to HBM3 is expected to be accompanied by higher average selling prices (ASP), significantly boosting next year’s HBM revenue.

Read more

(Photo credit: Samsung)

2023-11-07

[News] China’s Big Fund Drive Changxin Xinqiao towards 3-Year Memory Chip Mass Production

Following China’s Big Fund’s substantial $14.56 billion RMB investment in Changxin Xinqiao Storage Technology, a memory chip manufacturer, at the end of October, there are now reports of an additional $39 billion RMB injection.

China is actively building a domestic semiconductor supply chain, and according to Nikkei Asia, Changxin Xinqiao is set to utilize this funding to expedite the construction of its facility in Hefei, Anhui province, with the aim of achieving mass production within a span of three years.

Hefei is also the location of a production facility for ChangXin Memory Technologies (CXMT), a major semiconductor manufacturer specializing in DRAM production. Changxin Xinqiao shares some shareholders and its general manager with CXMT, according to Tianyancha.

Chinese media points out that Changxin Xinqiao has ambitious plans to produce DRAM chips in Hefei, destined for use in computers and a wide array of electronic devices. At present, Changxin Xinqiao has initiated the tendering process for new facility equipment and is poised to accelerate procurement and related procedures using the recently acquired funding.

With support from the Hefei City government, Changxin Xinqiao initiated the DRAM factory construction project in 2019 and laid out a policy to make use of domestically manufactured semiconductor production equipment.

(Image: CXMT)

Explore more:

  • Page 241
  • 320 page(s)
  • 1598 result(s)

Get in touch with us