Semiconductors


2023-05-03

Chinese Players Rally for Demand Surge in MOSFET, IGBT, and SiC

Chinese semiconductor companies are once again quickly making their presence known in the power semiconductor market, particularly in the fields of MOSFET, IGBT, and SiC.

Among various types of power ICs and power devices, MOSFET and IGBT-based voltage-controlled switching devices have become the mainstream products, accounting for more than 70% of power devices due to their ease of use, fast switching speed, and low power loss. They are mainly used in end markets such as automobiles, industry, and consumer electronics.

On the other hand, SiC can further assist in breakthroughs in EV technology and has become the most popular alternative technology route in the market, with its strong material properties such as low resistance, high temperature resistance, and high voltage resistance.

From IGBT and MOSFET to SiC, there has been a surge in demand in recent years, indicating the enormous growth potential of power semiconductors for automotive use. This has attracted many Chinese players to enter the competition.

IGBT: Explosive Growth for Chinese Players

As the core component of new energy vehicles, demand for IGBT is increasing. Looking at the financial reports of overseas large factories, the top five IGBT chip manufacturers in Q1 of this year still face tight delivery times, with the longest reaching 54 weeks.

The rapid growth of the EV and energy storage markets has resulted in a supply-demand imbalance for SiC MOSFETs. Major international IDM factories’ production capacity won’t be able to meet the demand in the coming years. Consequently, Infineon, STMicroelectronics, and ON Semiconductor are focusing on local supply in Europe and America. This has led to Chinese suppliers replacing automotive IGBTs for the domestic market.

In 2022, the IGBT industry in China saw a surge in demand. After a two-year auto chip shortage starting in 2020, the supply of IGBTs has become even tighter. In the second half of 2022, IGBT surpassed automotive MCU and became the biggest supply bottleneck affecting automotive production expansion.
According to the latest statistics from the China Association of Automobile Manufacturers, China’s new energy vehicles continued to explode in 2022, with production and sales reaching 7.058 million and 6.887 million vehicles, respectively, a year-on-year increase of 96.9% and 93.4%, maintaining the world’s first for eight consecutive years.

Many representative companies in China continue to strengthen their IGBT technology research and development:

  • In the first half of 2022, StarPower Semiconductor developed a new generation of 650V/750V IGBT chips for the new car standard based on the seventh-generation microgroove Trench Field Stop technology, which passed customer verification and began mass production in the second half of 2022.
  • Silan is keeping up with the trend of new energy development and has entered the field of vehicle-grade IGBT modules and SiC MOSFETs through a private placement financing. Its vehicle-grade IGBT and other products have been verified and have been delivered in bulk.

Since the end of 2021, the IGBT capacity of companies such as CRRC Times Electric, Silan, and Huahong Grace has been ready, and their revenue has also been rising. Combining the data of major companies with revenue exceeding 10 billion yuan that have released their 2022 financial reports, the power device companies are CRRC Times Electric, with 18.034 billion yuan, and Hua Run Micro, with 10.06 billion yuan.

MOSFET: Demand Doubles with the Rise of EVs

MOSFETs are used in high-voltage applications, such as DC-DC and OBC, to convert and transmit electrical energy. On average, there are now over 200 MOSFETs per car. As cars become more advanced and incorporate features like ADAS, safety, and entertainment, the number of MOSFETs per car is expected to double to 400 in high-end models.
With major companies such as Renesas gradually withdrawing from the low and medium-voltage MOSFET market, Chinese players have been accelerating their entry into the automotive supply chain. Currently, companies such as Silan and Nexperia are continuously expanding their global market share of MOSFETs, while other companies such as China Resources Microelectronics, Yangjie Electronic, Good-Ark Electronics, Jilin Sino-Microelectronics, NCE Power Co, New Jie Energy, Oriental Semi and Jiejie Microelectronics have been continuously developing in the field of automotive-grade MOSFETs in recent years.

Chinese IDM companies have expanded their market share by offering high-voltage super junction products:

  • Silan has completed the development of a 12-inch high-voltage super junction MOS process platform.
  • China Resources Microelectronics has achieved revenue of over 100 million yuan in the first quarter of 2022 for high-voltage super junction products.
  • Yangjie Electronic has achieved a significant increase in MOS orders for automobiles in the first quarter of 2022.

SiC: Entire Supply Chain Enters the Game

The growth of EV and energy storage markets has been causing a supply shortage in SiC. As major international IDMs are expected to expand their SiC capacity and potentially engage in more M&A activities, Chinese manufacturers are simultaneously make more investments throughout SiC supply chain:

  • IDM: Sanan Optoelectronics, Inventchip, Silan, and Sichain are trying to transform the IDM model by improving their processes but face development obstacles.
  • Foundry: Besides Fabless manufacturers are participating in the SiC market, foundry companies such as X-FAB are also actively developing related businesses, especially Taiwanese manufacturers. After EPISIL Hong Young Semiconductor and ProAsia Semiconductor have also entered the market.

XinYueNeng a new foundry invested by Geely Auto, has also attracted market attention. Its related projects are expected to be put into operation in the second half of this year, and its partner AccoPower is already producing SiC power modules for vehicles.

It’s also important to note the development of the SiC specialized production equipment market. Some key equipment, such as the epitaxial reactor, is experiencing delivery delays, which may impact the expansion plans of suppliers like Tianyu Semiconductor and EpiWorld. On the positive side, it still presents great opportunities for local equipment manufacturers.

Read more:

2023-05-03

DRAM and NAND Flash Spot Market Dynamics Update

 

DRAM Spot Market:

SpecTek, a subsidiary of Micron, has slightly increased the prices of its products in the spot market. Additionally, sellers have indicated that they will not slash prices further for low-priced chips. As a result, the momentum of trading activities has stagnated. Like buyers in the contract market, buyers in the spot market are adopting a wait-and-see approach. Facing significant losses, DRAM suppliers need to enlarge the scale of their production cuts in order to stabilize prices. DDR4 products are also experiencing a serious inventory glut, and their prices could keep going down due to the weak overall demand. Conversely, DDR5 products are experiencing a tighter supply due to the PMIC incompatibility issue, thereby leading to an increase in their prices. The average spot price of mainstream chips (i.e., DDR4 1Gx8 2666MT/s) fell by 0.06% from US$3.235 the previous week to US$3.233 this week.

NAND Flash Spot Market: 

Inquiries for some packaged dies were once prosperous with market anticipation gradually turning to focusing on the rebound of prices under suppliers’ production cuts, however, the level of demand is seen primarily from short-term and urgent orders at an insignificant expansion of transactions, where overall prices are still dropping at a decelerated pace. 512Gb TLC wafer has dropped by 0.76% in spot prices this week, arriving at US$1.436.

2023-05-02

SiC vs. Silicon Debate: Will the Winner Take All?

The SiC market has been very active lately, with constant news coming from device suppliers and car makers. And there seems to be an ongoing tug-of-war between supply and demand.

Toshiba announced in April the groundbreaking of its power semiconductor fab for SiC in Ishikawa Prefecture, with the first stage beginning in the 2024 fiscal year. This news echoes earlier reports from Japanese media that Toshiba is strengthening the vertical integration throughout SiC equipment, wafers, and devices, and planning to increase the production by three times in 2024 and 10 times by 2026.

Meanwhile, over the past two years, leading companies in the Europe and the US such as Infineon and ST have also accelerated M&A as well as internal expansion for SiC production devices at an unprecedented pace, aiming to expand their SiC-related businesses and maintain their core competitiveness in the market.

Despite aggressive demand-driven expansion plans, the unexpected announcement from Tesla in mid-March that it plans to reduce overall SiC usage by 75% in the next generation of electric vehicle platforms has sparked various speculations in the industry. This move was made without compromising the performance and efficiency of the cars and represents one of the few specific details that Tesla has revealed about its new car plans.

Now here is the question – will the popularity of SiC be a genuine trend, or merely a passing fad that could lead to a potential bubble in the market?

SiC or Si-based solutions?

Compared to IGBT and MOSFET, the dominant technologies in power semiconductor, SiC offers stronger advantages such as low resistance, high temperature and high voltage tolerance that can overcome the technical bottlenecks of EVs by improving battery efficiency and solving component heat dissipation issues. SiC can also make chip design sizes smaller, which means more flexibility in vehicle design.

These advantages have made SiC the most sought-after technology. According to TrendForce, the SiC power device market is expected to grow at a CAGR of 35% to reach $5.33 billion annually from 2022 to 2026, driven by mainstream applications such as electric vehicles and renewable energy.

There is a long-standing debate among the industry about whether SiC will replace IGBTs entirely. What we believe is that SiC may not completely replace IGBTs considering their distinct targeted use scenarios.

In terms of use cases, SiC is particularly suitable for high-frequency, high-voltage applications, especially in the field of new energy vehicles. Traditional Si-based IGBT chips have reached the physical limit in high-voltage fast charging models, making SiC more favorable for new energy vehicles.

However, SiC transistors are expensive due to complex production processes, slow crystal growth, and difficult cutting. Unlike silicon, which can be pulled quickly, SiC crystals grow at a slow rate of 0.2-1mm/hour and are prone to cracking during the cutting process due to their high hardness and brittleness, leading to hundreds of hours of cutting time.

Additionally, SiC transistors also have some drawbacks such as vulnerability to damage and temperature sensitivity, which makes them unsuitable for low-cost and low-power applications.

IGBT, on the contrary, is preferred over SiC in such a field because it is more cost-effective, reliable, and has better capacitance and surge capability for high-power and high-current applications. In certain scenarios, such as DC-DC charging piles, IGBT is irreplaceable due to its cost advantage and suitability.

Could a Hybrid Solution be the Answer?

The premise above can help to explain Tesla’s conflicting decision to cut back on SiC usage.

Tesla’s reluctance to fully adopt SiC technology is mainly due to concerns about reliability and supply chain stability, as evidenced by a mass recall of Model 3 due to issues with SiC components in the rear electric motor inverter.

In addition, the shortage of substrate materials is another challenge facing the SiC industry as a whole, with major manufacturers such as Wolfspeed, Infineon, and ST ramping up production capacity to address the issue. As a result, Tesla is considering alternative ways to mitigate the risks associated with supply chain constraints.

Despite these challenges, SiC remains a promising trend for the EV industry. Even Tesla recognizes its enormous potential commercial value.

In terms of technological innovations, Tesla’s next-generation EVs may feature a novel packaging design for the primary inverter, utilizing a hybrid SiC/Si IGBT packaging approach that leverages the unique strengths of both technologies while avoiding potential pitfalls. This technological advancement poses certain difficulties, but the groundbreaking innovation at the engineering design level is definitely something to look forward to.

Read more:

(Photo credit: Tesla)

2023-04-28

Micron Targets Low-Priced Products to Halt Memory Price Decline: TrendForce

Amid a prolonged market downturn and persistent weakness in end demand, the world’s top three memory chipmakers – Samsung, SK Hynix, and Micron – have implemented production cuts in an effort to control the continuing decline in memory prices through supply management. Recently, news emerged in the memory channel market that Micron had notified its customers that starting in May, it will not accept inquiries for DRAM and NAND Flash below current market prices.

According to TrendForce, the situation is not widespread at the moment, but is limited to low-priced memory chips. As for other product categories with high inventory levels, they still cannot avoid the situation of falling prices.

Contract market:

Although DRAM suppliers have actively reduced production, the output bit volume has not yet reached an effective convergence in 2Q23, so the quarterly contract price decline will be greater than originally expected, with an expected drop of more than 15%. TrendForce has observed that there is a strong wait-and-see atmosphere on the OEM side. While the willingness to purchase DRAM has increased, the premise of the deal is that low-priced quotes are attractive enough to OEMs. Due to poor demand prospects, the purchasing behavior of buyers still appears to be passive.

Spot market:

TrendForce pointed out that Micron’s subsidiary brand, Spectek, has slightly raised prices for its products this week, especially in the low-priced chip segment, indicating a reluctance to further reduce prices. Therefore, trading in the spot market appears stagnant, similar to the strong wait-and-see attitude mentioned in the contract market.

As suppliers have already entered a stage of significant losses, it is necessary to continue to expand production cuts to avoid prices from collapsing again. Among them, DDR4 still has a price decline due to high inventory levels and weak demand, while the supply of DDR5 is limited by the PMIC compatibility issue, resulting in an upward trend in spot prices.

2023-04-26

Chiplet Design: A Real Game-Changer for Substrates

In the post-Moore’s Law era, chiplet design has been burgeoning as the mainstream architecture.

With the widespread adoption of EUV technology by foundries on process nodes of 5nm and below, the cost of semiconductor fabrication has skyrocketed. The cost of the 5nm process has grown by almost 1x compared to the 7nm process, and the 3nm process is expected to increase by almost 1x compared to the 5nm process.

To address this issue, IC design companies have started to split chip components or connect multiple chips and adopt advanced packaging such as 2.5D/3D IC to integrate multiple chips together.

Compared to traditional chip design methods, chiplet design has superior characteristics such as shorter upgrade cycles, lower costs, and higher yields, which is one of the reasons why chiplet technology is gaining popularity.

AMD’s chiplet design is a representative example. Through close collaboration with TSMC, AMD has fully transitioned its CPUs to chiplets since the 7nm process, with the Ryzen 7000 series CPU and Radeon RX 7000 series graphics cards released in 2022. The latter uses the RDNA 3 architecture and integrates the GCD and MCD produced by the 5nm and 6nm processes respectively, as a result improving overall performance, with a 54% increase in RDNA 3’s Performance per Watt.

Under the leadership of industry leaders such as AMD and Intel, chiplet design has had a significant impact on the entire semiconductor industry – substrates manufacturers in particular.

ABF Substrates Set to Soar

Aside from CPUs, developments in AMD and Intel’s server platforms indicate that the trend towards higher-layer-count and larger-area ABF substrates is expected to continue.

Given the server shipment volume is expected to remain stable and grow steadily in the mid to low single digits for the next 3-5 years, the growth momentum of ABF substrates mainly comes from the increase in layer count and area brought by 2.5D/3D packaging adoption in servers.

Starting in 2020, ABF substrates saw a surge in demand due to the pandemic. The supply-demand gap peaked in 2021, and in the first half of 2022, ABF substrate prices increased while volume increased and gross profit margins hit new highs.

Due to the impact of shortage in ABF substrates in 2020-2021, major substrate manufacturers have initiated large-scale expansion plans, with the expectation that demand for ABF substrates would continue to grow with the upcoming releases of new server platforms and the integration of 2.5D packaging for PC CPUs.

Growing demands with Some Hiccups

However, the moves have been put on hold for now. Since the second half of 2022, due to inventory correction in the overall semiconductor industry and the delayed production time of Intel’s new server platform, there’s been a supply glut in ABF substrates.

Therefore, Unimicron has taken the lead in adjusting its capital expenditure plans, reducing its planned capacity increase for 2023 from about 20% to only 3.5%. AT&S has also tentatively postponed the significant increase in capacity planned for the end of 2024. It is unclear when the expansion will resume or whether the expansion will be scaled back.

This indicates that current substrate manufacturers have not only lowered their demand projections for 2023, but also for 2025-2026. Further adjustments to the expansion plans of other manufacturers will also affect the future market supply-demands dynamics.

Back on Track for Major Growth in 2024

Looking into the future, things are looking up for the ABF substrate industry. In the second quarter of 2023, we can expect the release of new server platforms from AMD and Intel, as well as the completion of PC inventory adjustments.

With expansion plans in place, it’s predicted that global ABF substrate production capacity will only increase by 15-20% in the latter half of 2023, continuing to put pressure on substrate manufacturers, according to TrendForce.

Things are expected to pick up in 2024 with the release of AMD and Intel’s next-generation server platforms, Zen 5 and Birch Stream. Plus, the anticipated introduction of 2.5D packaging for PC CPUs will drive a new wave of demand for ABF substrates. All in all, we can expect a significant rebound for the ABF substrate industry in 2024.

  • Page 244
  • 274 page(s)
  • 1370 result(s)

Get in touch with us