Semiconductors


2023-08-28

[News] NVIDIA’s Financial Forecast Stands Out, Yet Short-Term Semiconductor Market Weakness Remains

NVIDIA Beats Expectations with Q2 Financial Results and Optimistic Q3 Outlook, But Overall Semiconductor Short-Term Prospects Remain Weak, According to Taiwan’s Central News Agency.

While the semiconductor industry remains subdued, NVIDIA stands out with robust operational performance and a positive outlook. The company reported Q2 revenue of $13.51 billion, an 88% increase from the previous quarter and double the figure from the same period last year. Net income reached $6.19 billion, translating to $2.48 per share. NVIDIA anticipates Q3 revenue to further reach around $16 billion, marking a 170% YoY increase.

According to research firm TrendForce, NVIDIA’s rapid data center business growth is the primary driver. In Q4 of the fiscal year 2022, data center revenue accounted for about 42.7% of the total, surpassing gaming. In Q1 of FY 2023, it exceeded 45%, and by Q2 of FY 2024, data center revenue reached $10.32 billion, a 141% increase from the previous quarter and a 171% YoY increase, making up more than 76% of total revenue.

TrendForce notes that AI server solutions are pivotal in propelling NVIDIA’s data center growth, including AI accelerator GPUs and AI server reference architecture like HGX.

Arisa Liu, a researcher and director at Taiwan Industry Economics Services, mentioned that NVIDIA’s outstanding performance underscores its solid leadership in the AI market. She emphasized that customer demand for AI-related solutions is consistently on the rise.

Liu also mentioned that NVIDIA’s supply chain is expected to benefit in tandem. Orders for TSMC’s 7nm, 4nm, and 3nm advanced processes might increase. Advanced packaging technologies like CoWoS are expected to remain in high demand. In addition, orders for silicon intellectual property, high-speed transmission components, power supply, PCBs, chassis, and server OEMs are likely to see growth.

However, Liu indicated that due to the relatively low share of the AI market, it cannot fully offset the impact of sluggish demand in major application markets such as computers, smartphones, and consumer electronics. As a result, the short-term semiconductor market conditions are expected to remain weak.

(Photo credit: NVIDIA)

2023-08-28

[News] Taiwanese Computer Brand Manufacturers Rush into the AI Server Market

According to a report by Taiwan’s Economic Daily, a trend is taking shape as computer brand manufacturers venture into the AI server market. Notably swift on this path are Taiwan’s ASUS, Gigabyte, MSI, and MITAC. All four companies hold a positive outlook on the potential of AI server-related business, with expectations of reaping benefits starting in the latter half of this year and further enhancing their business contributions next year.

Presently, significant bulk orders for AI servers are stemming from large-scale cloud service providers (CSPs), which has also presented substantial opportunities for major electronic manufacturing services (EMS) players like Wistron and Quanta that have an early foothold in server manufacturing. As the popularity of generative AI surges, other internet-based enterprises, medical institutions, academic bodies, and more are intensifying their procurement of AI servers, opening doors for brand server manufacturers to tap into this burgeoning market.

ASUS asserts that with the sustained growth of data center/CSP server operations in recent years, the company’s internal production capacity is primed for action, with AI server business projected to at least double in growth by next year. Having established a small assembly plant in California, USA, and repurposing their Czech Republic facility from a repair center to a PC manufacturing or server assembly line, ASUS is actively expanding its production capabilities.

In Taiwan, investments are also being made to bolster server manufacturing capabilities. ASUS ‘s Shulin factory has set up a dedicated server assembly line, while the Luzhu plant in Taoyuan is slated for reconstruction to produce low-volume, high-complexity servers and IoT devices, expected to come online in 2024.

Gigabyte covers the spectrum of server products from L6 to L10, with a focus this year on driving growth in HPC and AI servers. Gigabyte previously stated that servers contribute to around 25% of the company’s revenue, with AI servers already in delivery and an estimated penetration rate of approximately 30% for AI servers equipped with GPUs.

MSI’s server revenue stands at around NT$5 billion, constituting roughly 2.7% of the company’s total revenue. While MSI primarily targets small and medium-sized customers with security and networking servers, the company has ventured into the AI server market with servers equipped with GPUs such as the NVIDIA RTX 4080/4090. In response to the surging demand for NVIDIA A100 and H100 AI chips, MSI plans to invest resources, with server revenue expected to grow by 20% to NT$6 billion in 2024, with AI servers contributing 10% to server revenue.

MITAC ‘s server business encompasses both OEM and branding. With MITAC’s takeover of Intel’s Data Center Solutions Group (DSG) business in July, the company inherited numerous small and medium-sized clients that were previously under Intel’s management.

(Photo credit: ASUS)

2023-08-28

How Are Autotech Giants Revving Up Their R&D Game Amid the Downturn?

In the face of adversities within the autonomous vehicle market, car manufacturers are not hitting the brakes. Rather, they’re zeroing in, adopting more focused and streamlined strategies, deeply rooted in core technologies.

Eager to expedite the mass-scale rollout of Robotaxis, Tesla recently announced an acceleration in the development of their Dojo supercomputer. They are now committing an investment of $1 billion and set to have 100,000 NVIDIA A100 GPUs ready by early 2024, potentially placing them among the top five global computing powerhouses.

While Tesla already boasts a supercomputer built on NVIDIA GPUs, they’re still passionate about crafting a highly efficient one in-house. This move signifies that computational capability is becoming an essential arsenal for automakers, reflecting the importance of mastering R&D in this regard.

HPC Fosters Collaboration in the Car Ecosystem

According to forecasts from TrendForce, the global high-performance computing(HPC) market could touch $42.6 billion by 2023, further expanding to $56.8 billion by 2027 with an annual growth rate of over 7%. And it is highly believed that the automotive sector is anticipated to be the primary force propelling this growth.

Feeling the heat of industry upgrades, major automakers like BMW, Continental, General Motors, and Toyota aren’t just investing in high-performance computing systems; they’re also forging deep ties with ecosystem partners, enhancing cloud, edge, chip design, and manufacturing technologies.

For example, BMW, who’s currently joining forces with EcoDataCenter, is currently seeking to extend its high-performance computing footprint, aiming to elevate their autonomous driving and driver-assist systems.

On another front, Continental, the leading tier-1 supplier, is betting on its cross-domain integration and scalable CAEdge (Car Edge framework). Set to debut in the first half of 2023, this solution for smart cockpits offers automakers a much more flexible development environment.

In-house Tech Driving Towards Level 3 and Beyond

To successfully roll out autonomous driving on a grand scale, three pillars are paramount: extensive real-world data, neural network training, and in-vehicle hardware/software. None can be overlooked, thereby prompting many automakers and Tier 1 enterprises to double down on their tech blueprints.

Tesla has already made significant strides in various related products. Beyond their supercomputer plan, their repertoire includes the D1 chip, Full Self-Driving (FSD) computation, multi-camera neural networks, and automated tagging, with inter-platform data serving as the backbone for their supercomputer’s operations.

In a similar vein, General Motors’ subsidiary, Cruise, while being mindful of cost considerations, is gradually phasing out NVIDIA GPUs, opting instead to develop custom ASIC chips to power its vehicles.

Another front-runner, Valeo, unveiled their Scala 3 in the first half of 2023, nudging LiDAR technology closer to Level 3, and laying a foundation for robotaxi(Level 4) deployment.

All this paints a picture – even with a subdued auto market, car manufacturers’ commitment to autonomous tech R&D hasn’t waned. In the long run, those who steadfastly stick to their tech strategies and nimbly adjust to market fluctuations are poised to lead the next market resurgence, becoming beacons in the industry.

For more information on reports and market data from TrendForce’s Department of Semiconductor Research, please click here, or email Ms. Latte Chung from the Sales Department at lattechung@trendforce.com

(Photo credit: Tesla)

2023-08-25

TrendForce Dives into NVIDIA’s Product Positioning and Supply Chain Shifts Post Earnings Release

NVIDIA’s latest financial report for FY2Q24 reveals that its data center business reached US$10.32 billion—a QoQ growth of 141% and YoY increase of 171%. The company remains optimistic about its future growth. TrendForce believes that the primary driver behind NVIDIA’s robust revenue growth stems from its data center’s AI server-related solutions. Key products include AI-accelerated GPUs and AI server HGX reference architecture, which serve as the foundational AI infrastructure for large data centers.

TrendForce further anticipates that NVIDIA will integrate its software and hardware resources. Utilizing a refined approach, NVIDIA will align its high-end, mid-tier, and entry-level GPU AI accelerator chips with various ODMs and OEMs, establishing a collaborative system certification model. Beyond accelerating the deployment of CSP cloud AI server infrastructures, NVIDIA is also partnering with entities like VMware on solutions including the Private AI Foundation. This strategy extends NVIDIA’s reach into the edge enterprise AI server market, underpinning steady growth in its data center business for the next two years.

NVIDIA’s data center business surpasses 76% market share due to strong demand for cloud AI

In recent years, NVIDIA has been actively expanding its data center business. In FY4Q22, data center revenue accounted for approximately 42.7%, trailing its gaming segment by about 2 percentage points. However, by FY1Q23, data center business surpassed gaming—accounting for over 45% of revenue. Starting in 2023, with major CSPs heavily investing in ChatBOTS and various AI services for public cloud infrastructures, NVIDIA reaped significant benefits. By FY2Q24, data center revenue share skyrocketed to over 76%.

NVIDIA targets both Cloud and Edge Data Center AI markets

TrendForce observes and forecasts a shift in NVIDIA’s approach to high-end GPU products in 2H23. While the company has primarily focused on top-tier AI servers equipped with the A100 and H100, given positive market demand, NVIDIA is likely to prioritize the higher-priced H100 to effectively boost its data-center-related revenue growth.

NVIDIA is currently emphasizing the L40s as their flagship product for mid-tier GPUs, meaning several strategic implications: Firstly, the high-end H100 series is constrained by the limited production capacity of current CoWoS and HBM technologies. In contrast, the L40s primarily utilizes GDDR memory. Without the need for CoWos packaging, it can be rapidly introduced to the mid-tier AI server market, filling the gap left by the A100 PCle interface in meeting the needs of enterprise customers.

Secondly, the L40s also target enterprise customers who don’t require large parameter models like ChatGPT. Instead, it focuses on more compact AI training applications in various specialized fields, with parameter counts ranging from tens of billions to under a hundred billion. They can also address edge AI inference or image analysis tasks. Additionally, in light of potential geopolitical issues that might disrupt the supply of the high-end GPU H series for Chinese customers, the L40s can serve as an alternative. As for lower-tier GPUs, NVIDIA highlights the L4 or T4 series, which are designed for real-time AI inference or image analysis in edge AI servers. These GPUs underscore affordability while maintaining a high-cost-performance ratio.

HGX and MGX AI server reference architectures are set to be NVIDIA’s main weapons for AI solutions in 2H23

TrendForce notes that recently, NVIDIA has not only refined its product positioning for its core AI chip GPU but has also actively promoted its HGX and MGX solutions. Although this approach isn’t new in the server industry, NVIDIA has the opportunity to solidify its leading position with this strategy. The key is NVIDIA’s absolute leadership stemming from its extensive integration of its GPU and CUDA platform—establishing a comprehensive AI ecosystem. As a result, NVIDIA has considerable negotiating power with existing server supply chains. Consequently, ODMs like Inventec, Quanta, FII, Wistron, and Wiwynn, as well as brands such as Dell, Supermicro, and Gigabyte, are encouraged to follow NVIDIA’s HGX or MGX reference designs. However, they must undergo NVIDIA’s hardware and software certification process for these AI server reference architectures. Leveraging this, NVIDIA can bundle and offer integrated solutions like its Arm CPU Grace, NPU, and AI Cloud Foundation.

It’s worth noting that for ODMs or OEMs, given that NVIDIA is expected to make significant achievements in the AI server market for CSPs from 2023 to 2024, there will likely be a boost in overall shipment volume and revenue growth of AI servers. However, with NVIDIA’s strategic introduction of standardized AI server architectures like HGX or MGX, the core product architecture for AI servers among ODMs and others will become more homogenized. This will intensify the competition among them as they vie for orders from CSPs. Furthermore, it’s been observed that large CSPs such as Google and AWS are leaning toward adopting in-house ASIC AI accelerator chips in the future, meaning there’s a potential threat to a portion of NVIDIA’s GPU market. This is likely one of the reasons NVIDIA continues to roll out GPUs with varied positioning and comprehensive solutions. They aim to further expand their AI business aggressively to Tier-2 data centers (like CoreWeave) and edge enterprise clients.

2023-08-25

[News] TSMC Partners with ASE and Siliconware to Boost CoWoS Packaging Capacities

According to the news from Liberty Times Net, NVIDIA’s Q2 financials and Q3 forecasts have astounded the market, driven by substantial growth in their AI-centric data center operations. NVIDIA addresses CoWoS packaging supply issues by collaborating with other suppliers, boosting future capacity, and meeting demand. This move is echoed in South Korea’s pursuit of advanced packaging strategies.

South Korea’s Swift Pursuit on Advanced Packaging

The semiconductor industry highlights that the rapid development of generative AI has outpaced expectations, causing a shortage of advanced packaging production capacity. Faced with this supply-demand gap, TSMC has outsourced some of its capacity, with Silicon Interposer production being shared by facilities under the United Microelectronics Corporation and Siliconware Precision Industries. UMC has also strategically partnered with Siliconware Precision Industries, and Amkor’s Korean facilities have joined the ranks of suppliers to augment production capacity.

Due to equipment limitations, TSMC’s monthly CoWoS advanced packaging capacity is expected to increase from 10,000 units to a maximum of 12,000 units by the end of this year. Meanwhile, other suppliers could potentially raise their CoWoS monthly capacity to 3,000 units. TSMC aims to boost its capacity to 25,000 units by the end of next year, while other suppliers might elevate theirs to 5,000 units.

According to the source South Korean media, Samsung entered the scene, competing for advanced packaging orders against NVIDIA. South Korea initiated a strategic research project to rapidly narrow the gap in packaging technology within 5~7 years, targeting giants like TSMC, Amkor, and China’s JCET.

(Source: https://ec.ltn.com.tw/article/paper/1601162)
  • Page 253
  • 299 page(s)
  • 1492 result(s)

Get in touch with us