Semiconductors


2021-06-02

MCO 3.0 Lockdown in Malaysia, Hotspot for Packaging/Testing and Passive Component Manufacturing, Projected to Have No Effect on Semiconductor Companies, Says TrendForce


National governments in Southeast Asian countries, including Thailand, Vietnam, and Malaysia, have been instituting increasingly stringent pandemic control measures in response to the intensifying COVID-19 pandemic in these countries. Remarkably, these countries are all hotspots in the electronic component supply chain, and Malaysia, home to many semiconductor packaging and testing facilities as well as passive component fabs, has now come under the international spotlight as a result. In particular, Malaysia’s MCO 3.0 (Movement Control Order 3.0) lockdown, which was extended on June 1, specifically excludes the semiconductor industry, as this industry boasts relatively high market revenue. As such, packaging and testing facilities are currently operating normally in Malaysia, according to TrendForce’s latest investigations.

On March 18, 2020, the Malaysian government first implemented similar pandemic control measures, under which only about 50% of private businesses were allowed to operate. The semiconductor industry and medical services were notably excluded from the restrictions at the time, given the former’s high revenue and the latter’s critical importance during emergencies. Despite the heightened lockdown of the MCO 3.0, under which only certain essential economic activities are allowed to function, some aspects of the MCO 3.0’s restrictions are relatively more lenient, as this policy specifies only 40% of private business employees must adopt WFH. Incidentally, as previously mentioned, the MCO 3.0 does not apply to the semiconductor industry.

As manufacturing operations and lead times of passive components become constrained, end clients’ procurement activities remain uncertain in 2H21

On the other hand, TrendForce indicates that the passive component market, which is also a key industry in Malaysia, will likely face supply-side bottlenecks as a result of the MCO 3.0, affecting such suppliers as Taiyo Yuden, Walsin Technology, NDK, and Epson. Under the latest restrictions, product lead times in the passive component supply chain, along with the state of the transportation industry (which determines shipping and delivery schedules of passive components), will become key determinants of whether client orders can be fulfilled on time.

In addition, brands in Europe and North America will begin adjust their orders for late-3Q21 in June and July. Notebook brands including Dell and HP are not only expected to maintain their orders for 2H21, but also taking measures to ensure a steady supply of IC components, while Apple will begin procuring components for its upcoming iPhone 13 from the passive component supply chain in July. Although these orders are expected to provide upward momentum for the passive component market in 2H21, the resurgence of the pandemic in Southeast Asia, as well as whether the shortage of semiconductor components will be alleviated going forward, will affect clients’ procurement activities for MLCC (multilayer ceramic capacitors) in 2H21.

On the whole, although the packaging and testing operations of major IDMs (Intel, Infineon, and Texas Instruments) and OSAT operators (ASE, Amkor, TFME, and Hua Tian) in Malaysia remain unaffected for the time being, TrendForce believes that the MCO 3.0 will likely have an impact on the supply and demand of the global passive component market in 2H21.

For more information on reports and market data from TrendForce’s Department of Semiconductor Research, please click here, or email Ms. Latte Chung from the Sales Department at lattechung@trendforce.com

2021-05-25

With Employees from TSMC and VIS Testing Positive for COVID-19, What Will Happen to the Global Supply of Chips?

Owing to an uncontrolled spread of the COVID-19 pandemic, Taiwan has instituted Level 3 restrictions throughout the island. With employees from several tech companies testing positive for the virus, major foundries, including TSMC and VIS, are successively finding positive cases among their midst as well. Worries have therefore cropped up in the global semiconductor supply chain over whether the supply of chip can remain unaffected despite the infections in Taiwan.

Taking into account Taiwan’s share of foundry capacity within the global total, the aforementioned supply chain’s worries are not without merit. According to TrendForce’s investigations, Taiwanese foundries, including TSMC, UMC, VIS, and PSMC, collectively account for about 50% of the global foundry capacity, meaning about 50% of the global supply of chips is contingent on Taiwan.

However, TrendForce also finds that, despite the domestic spread of the pandemic, which forced various companies to institute WFH policies for their employees, most semiconductor fabs are operating without interruptions at the moment, indicating that the COVID-19 pandemic has yet to impact the production and supply of chips.

As well, both TSMC and VIS have immediately made public announcements stating that their operations remain unaffected by the positive cases. However, whether the pandemic can be sufficiently managed and whether it will hinder the supply of semiconductors going forward remains to be seen.

(Cover image source: Pixabay)

2021-05-25

Does the Current Semiconductor Shortage Represent a Real Demand, or Is It an Illusion Caused by Overbooking?

Now that the chip shortage has persisted for more than half a year, markets and industries are closely monitoring whether chip demand is as strong as expected, or whether the current shortage is a mere mirage caused by overbooked orders from clients in fear of insufficient components.

At any rate, analyzing the current chip shortage entails doing so on both the supply and the demand ends. First of all, with regards to the demand for automotive chips, which has been in the spotlight for the past two quarters, automakers first began suffering from a shortage of automotive chips last year. This took place because automotive electronics suppliers, which had historically maintained a relatively low inventory level, slashed their chip orders placed at foundries ahead of other foundry clients at the onset of the coronavirus crisis in early 2020.

Hence, once automotive demand saw a sudden upturn later on, these automotive electronics suppliers found themselves unable to place additional orders at foundries, whose production capacities had by this time become fully loaded. Automotive chips subsequently began experiencing a shortage as a result.

At the same time, demand for CIS, DDI, and PMICs skyrocketed owing to the global 5G rollout and to the spike in demand for PCs and TVs caused by the proliferation of WFH. Given that foundries had already been experiencing fully loaded capacities across their mature technologies required for fabricating these chips, most clients had no choice but to resort to upping their volume of chip orders in orders to ensure that they are allocated sufficient foundry capacities.

Brands’ order placement strategies

On the other hand, several brands of electronic devices have been overbooking their chips to mitigate the risk of the chip shortage that began last year as well as the increased shipping times. These brands span the notebook computer, TV, and smartphone industries.

Of these three industries, smartphone brands have been overbooking foundry capacities due to the aforementioned expectation of chip shortage and most smartphone brands’ ongoing attempt to seize market shares left in Huawei’s wake. It should be pointed out that, however, in response to lackluster sales during the May 1st Labor Day in China, most brands have now lowered their production targets.

Foundries, on the other hand, had already been experiencing fully loaded capacities due to high demand from various end devices. Hence, they were unable to reach the volume of orders that were overbooked by smartphone brands despite adjusting their product mixes and reallocating production capacities. As such, although smartphone brands have lowered their production targets, capacities across the foundry industry remain fully loaded.

 

“Brands are responding to the market situation by strategically procuring components. Even if they were to adjust their production targets, they could still adjust their purchases of raw materials and consumables. Actors in the supply chain are unlikely to rigorously examine the inventory levels of brands before any unexpected changes occur in either demand or material shortages”

Conversely, with regards to the notebook and TV industries, they had mostly experienced bullish demand in the past few quarters, meaning sales performances are mostly a non-issue. Their procurement efforts have thus been focused on taking stock of the supply of raw materials and consumables, and these efforts have been guided by a principle of stocking up on demand. This is in accordance with both the bullish sales and the expectations of the companies themselves.

Generally speaking, TV and notebook use the term of strategic stocking as an excuse to mitigate any doubts of rising inventory levels from market observers. For the supply chains of these industries, the current state of the market is primarily dictated by the demand side. Actors in the supply chain are unlikely to rigorously examine the inventory levels of brands before any unexpected changes occur in either demand or material shortages.

Taken together, the supply and demand situations of the notebook, smartphone, and TV markets, in addition to the capacity utilization rate of foundries, would seem to indicate that the inventory adjustments caused by overbooking is unlikely to taken place in the short run, contrary to the market’s fears. TrendForce currently expects the shortage of foundry capacities to persist at least until 1H22, only after which is the supply and demand situation in the semiconductor market like to gradually return to an equilibrium.

(Cover image source: Pixabay)

2021-05-12

Foxconn Dominates ODM Server Market by Taking Nearly 50% of AWS/Azure Server Business

The “new normal” in the post-pandemic era has seen the meteoric rise of high-speed and high-bandwidth 5G applications, which subsequently brought about a corresponding increase in cloud services demand. As such, the global server shipment for 2021 will likely reach 13.6 million units, a 5.4% increase YoY. As commercial opportunities in white-box servers begin to emerge, Taiwanese ODMs, including Quanta, Wiwynn, and Foxconn are likely to benefit.

The prevailing business model of the server supply chain involves having the ODM responsible for the design, hardware installation, and assembly processes, after which servers are delivered to server brands (such as HPE, Dell, Inspur, and Lenovo), which then sell the servers to end-clients. In contrast, a new business model has recently started to emerge; this business model involves having server ODMs responsible for manufacturing specific and customized server hardware, available directly for purchase by such end-clients as cloud service providers, thereby bypassing brands as the middlemen.

With regards to market share, Foxconn accounts for nearly half of the total server demand from Microsoft Azure and from AWS, while Quanta accounts for about 60-65% of Facebook’s server demand.

According to TrendForce’s investigations, ODMs including Quanta, Inventec, Foxconn, Wiwynn, and QCT have all received server orders from clients in the cloud services sector in 1H21. In particular, both Quanta and Inventec received orders from Microsoft Azure, AWS, Facebook, and Google Cloud. With regards to market share, Foxconn accounts for nearly half of the total server demand from Microsoft Azure and from AWS, while Quanta accounts for about 60-65% of Facebook’s server demand, in turn giving Foxconn and Quanta the lion’s shares in the ODM market.

The aforementioned Taiwanese ODMs have been aggressive in growing their presence in the private industrial 5G network and edge computing markets, with Quanta subsidiary QCT being a good case in point as an ODM that supplies servers to both telecom operators and private industrial networks for these clients’ respective 5G infrastructures build-outs.

More specifically, QCT stated the following in a press release dated Jan. 4, 2021:

“Quanta Cloud Technology (QCT), a global data center solution provider, independently developed Taiwan’s first 5G standalone (SA) core network, which recently passed interoperability and performance verifications for 5G Open Network Lab operated by Taiwan’s Industrial Technology Research Institute (ITRI). The core network was successfully connected to partner radio access networks (RAN) and third-party user equipment, realizing end-to-end 5G signal transmission from edge to core and achieving significant acceleration in both uplink and downlink speeds.”

In response to the edge computing demand generated by global 5G commercialization efforts, Wiwynn recently released the EP100 server, which is a 5G edge computing solution compliant with the OCP openEDGE specification. Developed in collaboration with U.S.-based 5G software solutions provider Radisys, the EP100 can function as an O-DU or an O-CU depending on the various 5G RAN needs of telecom operators.

Furthermore, Wiwynn is continuing to develop the next generation of edge computing servers targeted at the enterprise networking and edge computing segments.

Foxconn, on the other hand, has been focusing on developing vertical solutions for private industrial 5G networks. Foxconn’s hardware infrastructure offerings include edge computing servers, TSN network switches, and gateways. The company also offers a slew of software solutions such as data management platforms and other apps, hosted by Asia Pacific Telecom. Last but not least, Foxconn recently announced an additional US$35.6 million investment in its Wisconsin project; this injection of capital will make the company well equipped to meet the demand for servers as well as 5G O-RAN and other telecom equipment.

(Cover image source:Pixabay)

2021-05-12

Despite Domestic Drought, Taiwan Remains King in the World of Semiconductors

A small subtropical island off the coast of southeast China, Taiwan is subject to certain cyclical weather changes throughout the year, the most notorious of which is its yearly typhoons that at different times benefit its agricultural industry and cause various natural disasters.

Much like everything else that happened in 2020, last year marked a stark exception for the island’s climate, which saw no typhoons, resulting in a relatively dry year. Compounding the issue is the current season of low precipitation. Taken together, these factors have since resulted in a significant drought that required an all-hands-on-deck approach from the government, such as rationing water on specific weekdays and advising industries to cut down on water consumption.

Meanwhile, a similar drought has been taking place in the global semiconductor world. As the arrival of the COVID-19 pandemic last year brought fundamental changes to the way we work, study, and live, so too has the general public’s consumption of electronic devices – and, in turn, the worldwide demand for chips used in these devices – risen.

If there are bumps in the road to Taiwanese foundries’ continued dominance, lack of rain certainly isn’t one.

Seeing as how Taiwan is the central hub of the world’s advanced semiconductor technologies, acts as home to industry leader TSMC (which is the exclusive supplier of Apple’s M1 processors), and accounts for more than half of the world’s chip manufacturing capacity, industries and media alike are fearing that the domestic drought will exacerbate the current global chip shortage, since chip fabrication processes require enormous amounts of clean water.

However, true to its market leadership, the Taiwanese semiconductor industry has so far remained unaffected, at least on the supply side, by the water shortage. This is in part due to the fact that domestic foundries (i.e., chip manufacturers) have previously completed numerous drills related to worst-case scenarios of long droughts and are accordingly well prepared in these extenuating circumstances. Furthermore, the foundries also signed contracts with utility companies to ensure an ample supply of water to keep fabs (semiconductor fabrication plants) running via water tank trucks.

TrendForce therefore expects domestic foundry operations to continue unabated for the time being. Case in point, on April 15, TSMC announced an increased capital expenditure of US$30 billion for 2021. The foundry is also actively expanding its production capacity of mature technology processes in response to the growing demand from clients worldwide.

In the world of semiconductors, advancements in process technologies occupy merely one part of the equation when it comes to long-term success. Other requirements pertain to governmental, infrastructural, climate, procedural, and talent-related dimensions, just to name a few.

While Taiwanese foundries look for a way out of the ongoing drought, they are not only acing these requirements in spades, but also staying in the spotlight of the electronics supply chain in light of geopolitical tensions, oligopolistic market trends, and the persistent global health crisis. If there are bumps in the road to Taiwanese foundries’ continued dominance, lack of rain certainly isn’t one.

(Cover image source:TrendForce)

  • Page 268
  • 274 page(s)
  • 1369 result(s)

Get in touch with us