Semiconductors


2021-03-23

Fire at Renesas’s 12-Inch Wafer Fab Projected to Exacerbate Tight Supply of Automotive MCUs, Says TrendForce

A fire broke out at the 12-inch wafer production line of Renesas’s Naka Factory on March 19 due to an overcurrent in the plating equipment. Renesas said that the fire burned about 5% of the total area of the first floor. The Naka fab mainly manufactures MCUs and SoCs for automotive, industrial, and IoT-related applications. While Renesas officially aims to get the fab back to full operation within one month, TrendForce expects the immediate task of restoring the cleanroom and installing new equipment systems to take much longer than that. The repair of the production line will have to proceed meticulously so as to avoid the risks of manufacturing-related problems in the mass production of automotive chips later on. Three months is TrendForce’s conservative estimate for the fab to regain its former level of wafer-start capacity, meaning the tight supply of automotive MCUs will be further exacerbated going forward.

The Naka incident is not expected to result in additional orders for other foundries, given the current tight wafer-start capacity across the foundry industry

TrendForce indicates that the 12-inch Naka fab’s process technologies likely range from the 90nm node to the 40nm node. With regards to Renesas’s production lines for automotive chips, TrendForce expects the fire to impair the fab’s wafer-start capacities for products including automotive PMICs, certain V850 automotive MCUs, and first-generation R-Car SoCs. Other foundries, in particular TSMC, are able to support some of Renesas’s production, since 2/3 of their technologies are interoperable. However, it is exceedingly difficult for other foundries to allocate spare wafer-start capacities to make up for Renesas’s shortfall due to the existing wafer-start capacity crunch across the foundry industry.

Ranked third among automotive semiconductor suppliers in 2020, Renesas is also currently one of the top five largest automotive MCU suppliers at the moment. Other automotive MCU suppliers include STMicroelectronics, Infineon, NXP, TI, and Microchip. Although most of STMicroelectronics’ automotive MCUs are manufactured in-house, TrendForce believes that the Naka fire will not result in additional orders for Renesas’s competitors, including STMicroelectronics, since automotive semiconductors are currently in extreme shortage.

For more information on reports and market data from TrendForce’s Department of Semiconductor Research, please click here, or email Ms. Latte Chung from the Sales Department at lattechung@trendforce.com

2021-03-18

Intel Responds to AMD’s Challenge with Ice Lake CPUs as Competition in Server Market Intensifies, Says TrendForce

The x86 architecture remained the mainstream server architecture at the end of 2020, according to TrendForce’s latest investigations. In the x86 server segment, Intel took the lead with a 92% market share thanks to the wide-ranging positioning of its solutions. On the other hand, AMD saw its market share rise to nearly 8% in 4Q20, which represents a 3% growth compared to 4Q19. Other server solutions, based on non-x86 architectures, comprised an insignificant portion of the market. TrendForce projects total server shipment to increase by 21% QoQ in 2Q21 owing to the release of Intel’s new Ice Lake platform.

Notably, edge computing, which involves low-latency data processing, has risen to the forefront of server applications in response to the rise of AI and 5G networks. Ideal use cases of edge computing include autonomous driving, IIoT, and other proprietary commercial applications, with relevant vendors already scrambling to deliver solutions aimed at these use cases. With regards to architecture, ARMv8-based solutions are the most suitable for edge computing applications in terms of both cost and power consumption. With the ongoing 5G commercialization, ARMv8 solutions have been occupying a growing share within the total shipment of all ARM solutions, and North American data centers have been the most aggressive in adopting these solutions. TrendForce expects ARMv8 solutions to occupy a respectable share of the low power consumption edge computing market in 2023-2025.

With the upcoming ramp-up in production, Intel’s new Ice Lake CPUs will likely account for 40% of Intel CPU shipment in 4Q21

As previously mentioned, Intel’s x86 CPUs are the mainstream among server platforms. With regards to Intel’s server roadmap, the company has started shipping a small batch of Whitley Ice Lake CPUs to its clients in the data center segment in 1Q21, while bulk shipment to branded server manufacturers is expected to take place in 2Q21. At the same time, Intel expects Whitley Ice Lake CPUs to account for about 40% of Intel’s CPU shipment in 4Q21, although adoption by buyers remains to be seen.

In terms of specifications, the Whitley platform allows Ice Lake CPUs to be compatible with the fastest DDR4 standards and therefore provides a major improvement in both data transfer rate (MT/s) and maximum capacity of DRAM supported per CPU. The Whitley platform will effectively increase the average DRAM storage capacity of servers, leading to faster and more advanced virtualization applications while improving data streaming performances in data centers. On the whole, not only does the Whitley platform increase the Ice Lake CPU’s cloud computing capabilities, but it also allows Intel to catch up to AMD’s Rome platform, in turn further strengthening Intel’s leadership position in the server market. As such, buyers will likely adopt the Whitley platform given the increased server demand generated by the post-pandemic new normal. Incidentally, although AMD’s mass-produced server solutions are slightly superior to competing offerings from Intel in terms of specs and pricing, AMD will not make significant adjustments in its upcoming Milan platform. AMD will therefore unlikely be a factor that propels the overall bit demand for server DRAM.

In the competition among server CPUs with respect to the data transfer rate, the Whitley Ice Lake is Intel’s first server processor platform that supports PCIe Gen 4. Although AMD was already mass producing server CPUs featuring PCIe Gen 4 support in 2020, Intel will likely be more effective in leveraging this advantage across the application ecosystem. The reason is that Intel is the long-time leader in server CPUs and controls the lion’s share of the market. Furthermore, Intel aims to synergize its latest server CPUs with the second generation of its Optane SSDs. Working together, they are expected to significantly enhance the computing performance of servers for the applications that will become mainstream in the future (e.g., AI and machine learning). TrendForce believes that the penetration rate of PCIe Gen 4 will rise rapidly in 2H21 as Intel and AMD step up shipments of CPUs that support this interface.

Regarding the implementation of the support for DDR5 and PCIe Gen 5, both Intel and AMD have already begun sending samples of related products to their clients in 1Q21. Intel plans to begin mass production for server CPUs belonging to the Eagle Stream platform at the start of 2022. Since the Eagle Stream is designed to support PCIe Gen 5, it will provide another significant boost to the data transfer rate. As for AMD, it plans to commence mass production for server CPUs based on the Genoa platform in 2Q22.

For more information on reports and market data from TrendForce’s Department of Semiconductor Research, please click here, or email Ms. Latte Chung from the Sales Department at lattechung@trendforce.com

2021-03-17

NAND Flash Contract Prices Projected to Increase by 3-8% QoQ in 2Q21 Due to Easing of Oversupply, Says TrendForce

With Samsung, YMTC, SK Hynix, and Intel leading the charge, NAND Flash suppliers will maintain an aggressive effort to expand their production capacities throughout 2Q21, during which NAND Flash bit output will likely increase by nearly 10% QoQ, according to TrendForce’s latest investigations. On the other hand, orders from PC OEMs and Chinese smartphone brands since 1Q21, as well as recovering procurement activities from clients in the data center segment during 2Q21, will generate upward momentum propelling NAND Flash bit demand. Furthermore, buyers are actively stocking up on finished products, such as SSDs and eMMC, due to persistently limited NAND Flash controller supply. TrendForce therefore expects NAND Flash contract prices to increase by an average of 3-8% QoQ in 2Q21 after experiencing a 5-10% decline QoQ in 1Q21. In particular, as Samsung’s Line S2 fab in Austin has yet to resume full operation after the Texas winter storm, the supply of NAND Flash controllers going forward may be at risk, and Samsung’s ability to manufacture client SSDs will be further constrained as a result. In light of these factors, TrendForce is not ruling out the possibility that NAND Flash contract prices may increase by even more than current forecasts.

Contract prices of both client SSDs and enterprise SSDs are projected to rise due to delayed resumption at Samsung’s Line S2 fab

With regards to client SSDs, the persistent stay-at-home economy generated by the COVID-19 pandemic will likely result in strong demand for notebook computers in 2H21, while PC OEMs have raised their client SSD inventories as they manufacture more notebooks to meet demand. Given the high volumes of client SSD orders from PC OEMs, inventory level of NAND Flash suppliers is therefore likely to remain healthy. However, the shortage of NAND Flash controllers has yet to be resolved. Suspended operations at the Line S2 fab disrupted Samsung’s production of NAND Flash controllers, meaning some client SSD orders will not be fulfilled in 2Q21. Hence, the tight supply of finished products (i.e., client SSDs) will be further exacerbated. As such, client SSD contract prices are projected to increase by 3-8% in 2Q21.

With regards to enterprise SSDs, demand is expected to rebound from rock bottom in 2Q21, primarily because clients in the data center segment will ramp up their procurement activities after undergoing a period of inventory adjustment. In addition, demand for IT equipment from the governmental, healthcare, and financial services sectors will also gradually emerge. Other factors contributing to enterprise SSD demand include bids from Chinese telecom operators and increased IT equipment purchases from small and medium businesses globally. On the other hand, NAND Flash suppliers are no longer under pressure to destock via low prices, since their inventory levels have improved thanks to high demand from notebook manufacturers and smartphone brands. As the overall demand for NAND Flash rises, enterprise SSD contract prices are in turn expected to stabilize and experience a 0-5% growth QoQ in 2Q21.

High demand for Chromebooks will provide upward momentum for eMMC quotes, while contract prices of UFS are projected to undergo the lowest growths among NAND Flash products

eMMC contract prices will likely remain, for the most part, higher than expected despite the cyclical downturn in 1H21. In particular, strong demand from Chromebook manufacturers will provide upward momentum for eMMC quotes. Likewise, under the influence of NAND Flash controller shortage, eMMC buyers such as consumer electronics manufacturers will expand their procurement activities in order to build up their inventories. As a result, the overall eMMC demand will gradually ramp up in 2Q21. Conversely, the supply of eMMC controllers is still in shortage due to the fully loaded capacities across the foundry industry. Also, eMMC products under 32GB exclusively feature 2D NAND or 64L 3D NAND. Because production capacities allocated for these types of NAND Flash memories have been either reassigned to other 3D NAND products or scaled down, the oversupply of eMMC has been alleviated, and the long-term price drop of eMMC has subsequently come to a halt. In the short term, the shortage of controller ICs will result in a shortage of finished eMMC products. eMMC contract prices are therefore projected to increase by 3-8% QoQ in 2Q21.

Demand for UFS, which is primarily used for smartphones, is expected to remain high through 2Q21 because OPPO, Vivo, and Xiaomi have been aggressively procuring UFS since 4Q20, and Huawei spun off its Honor smartphone business unit. Buyers have also been anticipating an upcoming shortage of controller ICs and NAND Flash memory, leading them to build up their UFS inventories and therefore further driving up the overall UFS demand. On the supply side, inventory levels of suppliers have dropped significantly due to smartphone brands’ large-scale procurement activities previously. Although Chinese smartphone brands have yet to ramp up their bit demand, their existing level of demand still remains strong. Furthermore, clients from the data center segment are expected to increase their SSD procurement in 2Q21, and suppliers will maintain an aggressive approach regarding quotes in response. Even so, because smartphones account for the highest bit consumption share among all NAND Flash applications, NAND Flash suppliers are unlikely to significantly adjust their UFS quotes. As such, UFS contract prices are expected to increase by 0-5% QoQ in 2Q21, which is relatively lower compared to other NAND Flash products.

NAND Flash wafer contract prices are projected to increase by 5-10% QoQ as NAND Flash suppliers lower their bit shipment to the wafer market due to its lower profit margins

With regards to the NAND Flash wafer market, TrendForce has yet to observe an obvious improvement in the retail sales of end products such as SSDs, memory cards, and USB flash drives. However, as NAND Flash suppliers have been unable to make their scheduled delivery dates to OEMs due to an insufficient supply of controller ICs, module makers may stand to benefit from this and obtain more orders from OEMs, subsequently driving up the demand for NAND Flash wafers within the next one to two quarters, but the actual procurement of NAND Flash wafers will depend on whether the tight supply situation of controller ICs can be alleviated. On the other hand, inventories of NAND Flash suppliers have now fallen to mostly healthy levels thanks to procurement activities from smartphone brands since 4Q20. Suppliers have accordingly lowered their bit shipments to the NAND Flash wafer market (which yields a relatively lower profit margin compared to other product categories), due to the rising demand from notebook manufacturers and the expected recovery of the data center segment in 2Q21. On the whole, given the bullish market of mainstream products, such as smartphones and notebooks, TrendForce expects NAND Flash wafer contract prices to once again increase by 5-10% QoQ in 2Q21.

For more information on reports and market data from TrendForce’s Department of Semiconductor Research, please click here, or email Ms. Latte Chung from the Sales Department at lattechung@trendforce.com

2021-03-16

PC DRAM Contract Prices Projected to Undergo Remarkable 13-18% Increase QoQ in 2Q21 Owing to High Demand from End Products and Data Centers, Says TrendForce

At the moment, the DRAM market has formally entered a new cycle of rising prices, and 2Q21 will see larger QoQ price increases compared with 1Q21, according to TrendForce’s latest investigations. Looking ahead to 2Q21, shipments of various end products are expected to remain fairly strong. At the same time, clients in the data center segment will resume large-scale procurement. Hence, DRAM buyers across different application segments will be under pressure to stockpile. After experiencing QoQ increases of 3-8% for 1Q21, the average contract prices of different kinds of DRAM products are forecasted to rise more significantly by 13-18% QoQ for 2Q21.

PC DRAM contract prices are projected to rise by 13-18% QoQ due to urgent demand from notebook manufacturers driven by bullish notebook market

Notebook computer production on the whole will maintain a fairly healthy momentum in 2Q21. The demand for PC DRAM products therefore continues to grow as PC OEMs have been raising their annual production targets. Since buyers of PC DRAM products are now carrying a relatively low level of inventory (i.e., around 4-5 weeks) and anticipating that DRAM prices will keep rising in the foreseeable future, they have been further ramping up their DRAM procurement activities. With regards to supply, the three dominant DRAM suppliers retain a conservative approach for raising bit output. The production capacity share of PC DRAM could experience a squeeze in the future because of robust demand in other application segments. For instance, some smartphone brands continue to vigorously stock up on memory components. Also, the demand for server DRAM products are expected to warm up rapidly in 2Q21. All in all, contract prices of PC DRAM products will register significant QoQ increases of 13-18% for 2Q21.

Server DRAM prices are projected to rise by nearly 20% QoQ due to cyclical upturn in server shipments

With regards to the demand for server DRAM, the second quarter is traditionally the peak season for server shipments while also being a fairly busy period within the year for the procurement of other kinds of DRAM products. Hence, the situation of different sources of demand competing for DRAM suppliers’ production capacity becomes more evident in this period. TrendForce expects server DRAM buyers to be more aggressive in inventory building during 2Q21 and begin to raise the procurement quantity on a monthly basis. This, in turn, will sustain the uptrend in server DRAM prices. With regards to supply, the server DRAM production capacities of the three dominant suppliers will still not return to the level that existed in the middle of 2020, although these suppliers will slightly increase the share of server DRAM in their overall DRAM production capacities in 2Q21. In addition to the peak-season effect, the COVID-19 pandemic continues to influence server manufacturers as well. Server manufacturers have intentionally extended their component inventories by several more weeks because of the pandemic-induced uncertainties. TrendForce is therefore not discounting the possibility of server DRAM contract prices registering a QoQ increase as large as around 20% for 2Q21.

Mobile DRAM contract prices are projected to remain bullish due to smartphone brands’ expanded procurement activities in advance of market risks

With regards to mobile DRAM demand, smartphone brands will not relax their inventory-building efforts in 2Q21 as the production capacity crunch in the foundry market has made them more vigilant in maintaining a stable component supply. The quarterly total smartphone production volume for 2Q21 is forecasted to exceed 300 million units. Although the three dominant DRAM suppliers have yet to adjust their product mixes for 2Q21, they will probably have to later on because the ASPs of server DRAM and other kinds of DRAM products are rising faster than the ASP of mobile DRAM. Hence, the production capacity share of mobile DRAM could be scaled back so that the production capacity share of server DRAM could grow. Additionally, the behavior of mobile DRAM buyers has been influenced by the cyclical upturn in prices and the anxiety over a tightening of supply in the future. They will continue to procure in large quantities so as to avoid the risks of a supply shortage and larger price hikes. This means that mobile DRAM prices will be on the uptrend as buyers stock up in advance.

Graphics DRAM contract prices are projected to rise by 10-15% QoQ due to high demand for graphics cards from cryptocurrency miners

With regards to demand, the three growth pillars of the graphics DRAM market are graphics cards, game consoles, and cryptocurrencies. At the same time, the mining of various cryptocurrencies has become a lucrative activity. Besides graphics cards that represent the more conventional mining technologies, miners are buying notebooks for this purpose as well. Sensing opportunities, Nvidia has launched CMP (cryptocurrency mining processor) cards and thereby taken up more of DRAM suppliers’ resources. This, in turn, has led to small- and medium-sized OEMs and ODMs experiencing a widening supply gap for graphics DRAM. With regards to supply, the three dominant DRAM suppliers have all reassigned their production capacity for graphics DRAM from GDDR5 to GDDR6, resulting in an increasingly lopsided discrepancy between the two products’ bit supplies, so there is no effective resolution to the ongoing shortage of GDDR5 products. As for GDDR6, demand remains strong as cryptocurrency mining is keeping the demand for graphics cards at a high level, although Nvidia is hogging much of the existing production capacity for graphics DRAM. Looking ahead to 2Q21, the supply situation will still be very strained unless the values of the mainstream cryptocurrencies undergo a drastic change. TrendForce forecasts that contract prices of graphics DRAM will rise by about 10-15% QoQ during this period.

Consumer DRAM contract prices are projected to rise by up to 20% QoQ due to intensifying shortage

With regards to consumer DRAM demand, the demand for TVs, set-top boxes, and networking devices remains strong due to the prevailing stay-at-home economy. Additionally, the build-out of 5G infrastructure and the rapid migration to Wi-Fi 6 contribute to the brisk demand for low-density consumer DRAM products. The supply gap in consumer DRAM market is already significant at this moment and will likely widen in 2Q21. With regards to supply, the overall production capacity for DDR3 products is gradually shrinking. The three dominant suppliers are migrating to the more advanced processes such as the 1Z-nm and 1-alpha nm while reassigning the wafer production capacity of the older processes such as the 20nm and 25nm to CMOS image sensors. Also, Taiwan-based suppliers have allocated some wafer production capacity to products with higher margins (e.g., logic ICs and Flash memory). As a result, the consumer DRAM market is in a rare situation of experiencing a supply shortage and a demand rebound at the same time. There is a strong likelihood that prices of some consumer DRAM chips will register a QoQ increase of almost 20% for 2Q21 contracts, and there is room for further hikes following quarterly contract negotiations.

For more information on reports and market data from TrendForce’s Department of Semiconductor Research, please click here, or email Ms. Latte Chung from the Sales Department at lattechung@trendforce.com

2021-03-12

Impaired Shipment of Qualcomm 5G RFIC Expected to Lower 2Q21 Smartphone Production by About 5%, Says TrendForce

The Line S2 fab of Samsung in Austin, Texas sustained a power interruption, which has forced it to suspend operation since mid-February, under the impact from the winter storm. TrendForce’s latest investigations indicate that the capacity utilization rate for the entire fab is not expected to climb back to over 90% until the end of March. In particular, Samsung manufactures several products that are highly important for the production of smartphones, including the Qualcomm 5G RFIC, Samsung LSI OLED DDIC, and Samsung LSI CIS Logic IC. Supply-wise, the first two products sustained the brunt of the winter storm’s impact, and global smartphone production for 2Q21 is therefore expected to drop by about 5% as a result.

According to TrendForce’s investigations, Samsung was able to prepare for the power interruption ahead of time as the company had been forewarned by the local utility. Hence, the loss of WIP (work in progress) wafers caused by the incident was minimal. However, the delay in the resumption of full operation at the plant is expected to last more than two weeks, during which the fab will suspend its wafer input. The incident on the whole will have a definite impact on the global foundry industry that is already experiencing a serious capacity crunch. In terms of wafer input, the Qualcomm 5G RFIC, Samsung LSI OLED DDIC, and Samsung LSI CIS Logic IC account for 30%, 20%, and 15% of the Line S2’s monthly production capacity, respectively.

Of the three aforementioned products, the Qualcomm RFIC is primarily supplied to smartphone brands to be used in 5G handsets. This product is delivered to clients as part of either AP bundles or 5G modems. The winter storm’s impact on the production of the Qualcomm RFIC is expected to take place in 2Q21, resulting in a 30% decrease in 5G smartphone production for the quarter. However, TrendForce expects this incident to impair the 2Q21 production of all smartphones by only about 5%, given smartphone brands’ existing inventory of 5G AP bundles and 5G modems, in addition to the fact that smartphone brands are likely to keep up their quarterly smartphone production by increasing the production of 4G handsets to make up for the shortfall in 5G handsets. Furthermore, TrendForce expects the Line S2 fab to prioritize resuming the production of RF products ahead of other products, in turn further mitigating the winter storm’s impact on global smartphone production.

On the other hand, the Samsung LSI OLED DDIC is primarily used in Apple’s iPhone 12 series. The winter storm’s impact on these DDICs will similarly take place by the end of 2Q21. Even so, Apple likely possesses sufficient DDIC inventory, at least in the short term, since the period of peak DDIC demand for the company’s existing smartphone models has already passed. Moreover, the iPhone 12 mini may reach EOL earlier than expected due to disappointing sales. Should Apple decide to cut iPhone 12 mini production, the company will be able to further minimize the impact of OLED DDIC undersupply. Finally, as sales of the iPhone 11 (which is equipped with an LCD, instead of OLED, panel and therefore does not require OLED DDIC) have been resurging recently, Apple may increase the share of iPhone 11 in its total smartphone production in order to keep up its quarterly production volume. In light of these factors, TrendForce believes that the production volume of iPhones in 2Q21 will suffer only limited impact from OLED DDIC supply disruptions.

On the whole, although the production of 5G smartphones will face a relatively considerable challenge in 2Q21, smartphone brands will be able to keep up their quarterly production volume by raising the production share of 4G smartphones instead. TrendForce thus projects the winter storm to impair smartphone production for 2Q21 by no more than 5%, while maintaining the previous forecast of 1.36 billion units produced for 2021. However, TrendForce also does not rule out the possibility that the winter storm will lower the penetration rate of 5G smartphones in 2021 from 38%, as previously forecasted, to 36.5%.

For more information on reports and market data from TrendForce’s Department of Semiconductor Research, please click here, or email Ms. Latte Chung from the Sales Department at lattechung@trendforce.com

  • Page 270
  • 274 page(s)
  • 1368 result(s)

Get in touch with us