Articles


2024-03-18

[News] The Era of Heterogeneous Integration Approaches: Who Shall Dominate the Advanced Packaging Field?

“It is not the shortage of AI chips, it is the shortage of our CoWoS capacity,” replied TSMC Chairman Mark Liu during an interview in September last year, propelling this technology that TSMC had quietly cultivated for over a decade into a global spotlight.

As per a report from TechNews, the hardware demand sparked by generative AI has also led to “advanced packaging” becoming not only a hot keyword pursued by global investors but also a prominent feature of the semiconductor industry. From foundries and memory manufacturers to OASTs, all are actively involved in the research and capacity expansion of advanced packaging technologies.

TSMC, the leading force in the advanced packaging market, has repeatedly emphasized its efforts to expand capacity during its earnings call, including capacity expansions in Zhunan and Hsinchu, and even the possibility of constructing advanced packaging facilities in Chiayi.

Intel’s strategic moves also underscore its emphasis on the development of advanced packaging. Intel’s new plant completed in Penang, Malaysia in 2023 is aimed at establishing advanced packaging capacity.

Leading packaging and testing company, ASE Technology Holding, has also actively participated in the competition for advanced packaging. Apart from its subsidiary, Siliconware Precision Industries (SPIL), which is already a supplier for the backend packaging of CoWoS, ASE Technology Holding is also expanding advanced packaging capacity at its facility in Kaohsiung.

Memory manufacturers are also aggressively ramping up their advanced packaging capacity. SK Hynix, which exclusively supplies HBM for NVIDIA AI chips, recently announced plans to invest USD 1 billion in the development of advanced packaging. They view advanced packaging as the “future focus of semiconductor development for the next 50 years.

Advanced Packaging: Over a Decade of Development

In fact, advanced packaging is not a new concept. Tracing the history of packaging technology, the year 2000 undoubtedly marked a turning point. From this year onwards, packaging technology shifted from traditional wire bonding and flip-chip methods to “wafer-level packaging,” where most or all packaging and testing processes are conducted on the wafer itself.

The 2.5D packaging, which gained significant attention after 2023, actually emerged as early as 2010. However, due to cost concerns, the number of manufacturers adopting this technology was relatively limited, with a focus on high-performance computing chips.

Chiang Shang-yi, the Chief Strategy Officer of Foxconn Semiconductor, recalled the initial lack of interest in CoWoS technology, which even led to him being regarded as a “joke” within the company( TSMC) for proposing advanced packaging. He also revealed that the first company willing to adopt the costly CoWoS technology was actually Huawei.

 

▲ Semiconductor Packaging Technology Evolution compiled by McKinsey, Accelerated Technological Evolution after 2000 (Source: McKinsey)

Compared to 2D packaging technology, 2.5D packaging involves placing an intermediate layer between the chip and the IC substrate and stacking different chips in parallel. TSMC’s CoWoS has become synonymous with 2.5D packaging, where a silicon interposer layer is inserted between the chip and the SiP substrate, and metal layers are connected using Through-Silicon Vias (TSVs) to overcome the density limitations of SiP substrates, which previously restricted the number of chips.

Despite TSMC’s dominance, Intel, with its extensive technical expertise in CPU packaging, cannot be underestimated. In the 2.5D packaging battlefield, Intel employs EMIB technology as its strategy. Unlike CoWoS, EMIB does not utilize a silicon interposer layer.

Instead, its key feature lies in the “Silicon Bridge,” buried within the packaging substrate, which connects the bare dies. Intel believes that EMIB offers cost advantages compared to solutions using large silicon interposer layers.

In recent years, Samsung, which has been actively cultivating the semiconductor foundry market, has also ventured into the 2.5D packaging arena. Their proprietary I-Cube technology has traditionally targeted applications in High-Performance Computing (HPC) chips. When Samsung introduced I-Cube4 in 2021, it emphasized the integration of multiple logic dies and HBM placed on a silicon interposer layer, enabling heterogeneous integration into a single chip.

As Moore’s Law approaches its limits and the massive computational demands triggered by generative AI continue to surge, coupled with the trend towards lighter, thinner, and smaller end products, chips are inevitably evolving towards more transistors, greater computational power, and lower power consumption performance.

Therefore, the transition of packaging technology from 2.5D to 3D is undoubtedly an inevitable development.

The difference between 3D and 2.5D packaging lies in the stacking method. In 2.5D packaging, chips are stacked parallelly on an intermediate layer, while in 3D packaging, chips are stacked vertically in a three-dimensional manner.

The advantage of 3D packaging lies in its ability to create more space for transistors within a chip through stacking, shorten the distance between different bare dies significantly, enhance transmission efficiency, and reduce power consumption during transmission.

TSMC, Intel, and Samsung Racing for 3D Packaging Technology

TSMC’s positioning in 3D IC technology is undeniable. Its SoIC technology adopts the wafer-to-wafer bonding technique. SoIC integrates homogeneous and heterogeneous small dies into a single chip, with smaller dimensions and a thinner profile. It can be integrated into 2.5D CoWoS or InFO. From an external perspective, SoIC resembles a universal SoC chip but integrates various functions heterogeneously.

Intel’s layout in 3D packaging revolves around its 3D Foveros technology. Structurally, the bottom layer comprises a packaging substrate, with a bottom wafer placed on top serving as an intermediate layer. Within this intermediate layer, numerous TSVs (Through-Silicon Vias) are present, facilitating connections between the upper chips, modules, and other parts of the system to achieve transmission purposes.

Samsung’s X-Cube 3D packaging technology utilizes TSV processes. Currently, Samsung’s X-Cube test chips can stack the SRAM layer on top of the logic layer, interconnected via TSVs, employing its 7nm EUV process technology.

TSMC’s Comprehensive Ecosystem Strategy

Currently dominating the advanced packaging market, thanks to its acquisition of large contracts for manufacturing NVIDIA AI chips, TSMC is not only continuing to develop more advanced packaging technologies but is also actively promoting its 3D Fabric platform.

In addition to incorporating the three key packaging technologies CoWoS, InFo, and SoIC, this platform has expanded into an industry alliance. It includes participation from EDA, IP, DCA/VCA, memory, packaging and testing suppliers, as well as substrate and testing vendors. The goal is to create a complete 3D Fabric ecosystem, strengthen innovation, and enhance customer adoption willingness.

This alliance has attracted active participation from heavyweight players in the semiconductor upstream supply chain. Even companies traditionally seen as competitors in the packaging and testing sector, such as Amkor, ASE Technology Holding, and Siliconware Precision Industries (SPIL), are members. The comprehensive supply chain has become a significant advantage for TSMC in providing advanced packaging contract manufacturing services.

▲ TSMC’s 3D Fabric Alliance members, including major players from EDA to packaging and testing companies. (Image Source: TSMC)

In comparison, Intel, despite its robust technological expertise developed over many years and its proposition to independently provide wafer manufacturing or testing services, faces a disadvantage in expanding its market share in advanced packaging due to its lack of experience in the foundry market.

On the other hand, Samsung, compared to TSMC, is constrained by its yield issues in advanced processes. This limitation leads IC design companies to prioritize foundries with more stable yields when considering outsourcing comprehensive manufacturing services.

Read more

(Photo credit: TSMC)

Please note that this article cites information from TechNews.

2024-03-15

[News] Bulgarian SUNOTEC Signed a Contract with Huawei to Promote the Application of Battery Energy Storage Technology in Europe

EPC SUNOTEC, a leading company of PV and energy storage station in Europe, and Huawei Technologies Bulgaria signed a memorandum of understanding on energy storage in Shenzhen to jointly promote the application of battery energy storage technology in Europe.

Huawei has accumulation of digital technology, power electronics and energy storage technologies, and SUNOTEC have comprehensive advantages in the development and construction, quality control, and project management of PV and energy storage stations. The two enterprises will carry out comprehensive cooperation in the development and application of battery energy storage technology innovation, construction and operation of large-scale energy storage power stations in Europe.

Kaloyan Velichkov, the founder and CEO of SUNOTEC, said: “We are delighted to sign this MOU with Huawei, which signifies our joint efforts to further advance our green energy initiatives. The two companies will pave the way for a zero-carbon future, promote technological innovation and promote environmental stewardship, in line with SUNOTEC’s Vision 2030. ”

Huang Hongqi, the director of Huawei’s Digital Power Global Sales Dept, said, “SUNOTEC is an important partner for us. The signing of this MOU will deepen our cooperation in the field of renewable energy, especially the large-scale application of battery energy storage systems in Europe.

Last year, we signed a cooperation agreement for a 500MW PV project with a good result. This is a milestone in the commitment of both parties to accelerate the transformation and upgrading of the energy industry and promote sustainable development for a green and beautiful future. ”

Huawei currently provides intelligent PV and energy storage projects solutions and comprehensive technical support for SUNOTEC’s PV and energy storage projects in Europe. The two parties will leverage their respective advantages to jointly contribute to Bulgaria’s green and low-carbon transformation and sustainable development.

Read more

(Photo credit: Huawei)

2024-03-15

[News] Following February’s Advance Production of HBM3e, Micron Reportedly Secures Order from NVIDIA for H200

According to a report from the South Korean newspaper “Korea Joongang Daily,” following Micron’s initiation of mass production of the latest high-bandwidth memory HBM3e in February 2024, it has recently secured an order from NVIDIA for the H200 AI GPU. It is understood that NVIDIA’s upcoming H200 processor will utilize the latest HBM3e, which are more powerful than the HBM3 used in the H100 processor.

The same report further indicates that Micron secured the H200 order due to its adoption of 1b nanometer technology in its HBM3e, which is equivalent to the 12-nanometer technology used by SK Hynix in producing HBM. In contrast, Samsung Electronics currently employs 1a nanometer technology, which is equivalent to 14-nanometer technology, reportedly lagging behind Micron and SK Hynix.

The report from Commercial Times indicates that Micron’s ability to secure the NVIDIA order for H200 is attributed to the chip’s outstanding performance, energy efficiency, and seamless scalability.

As per a previous report from TrendForce, starting in 2024, the market’s attention will shift from HBM3 to HBM3e, with expectations for a gradual ramp-up in production through the second half of the year, positioning HBM3e as the new mainstream in the HBM market.

TrendForce reports that SK Hynix led the way with its HBM3e validation in the first quarter, closely followed by Micron, which plans to start distributing its HBM3e products toward the end of the first quarter, in alignment with NVIDIA’s planned H200 deployment by the end of the second quarter.

Samsung, slightly behind in sample submissions, is expected to complete its HBM3e validation by the end of the first quarter, with shipments rolling out in the second quarter. With Samsung having already made significant strides in HBM3 and its HBM3e validation expected to be completed soon, the company is poised to significantly narrow the market share gap with SK Hynix by the end of the year, reshaping the competitive dynamics in the HBM market.

Read more

(Photo credit: Micron)

Please note that this article cites information from Korea Joongang Daily and Commercial Times.

2024-03-15

[News] Samsung NAND Flash Prices Reportedly Set to Increase by 20%

According to a report by the South Korean news outlet The Chosun Daily, Samsung Electronics’ memory business has managed to endure the market downturn from last year. Recently, its strategy of reducing production has finally paid off, driving up chip prices.

Reports suggest that in the first quarter of this year, Samsung plans to raise NAND Flash chip prices by up to 20%, aiming to restore profitability to its memory chip business.

The report quotes a semiconductor industry source as saying, “The first-quarter price negotiations between major memory manufacturers such as Samsung Electronics and SK Hynix and their customers have not yet been concluded. However, customers are rushing to secure supplies as the price of NAND flash has been steadily increasing, and fears spread that NAND flash cuts will continue this year.”

As per the report citing sources, Samsung Electronics will renegotiate prices with major mobile, PC, and server customers in March and April this year. It is expected to push for a price increase of 15 to 20%.

As per a report from Commercial Times, the global economic downturn last year led to an oversupply of memory and a sharp decline in prices, resulting in severe losses for Samsung and SK Hynix’s memory businesses. Samsung’s memory division experienced its first-ever losses last year, dragging down the company’s overall profits to a new low.

Samsung, Micron, and SK Hynix, the three major players in the memory industry, began significant production cuts in the second half of last year, finally causing DRAM chip prices to rebound. However, the NAND Flash chip market is crowded with many manufacturers, including not only the three major players but also Japanese Kioxia and American Western Digital, leading to less significant effects from the production cuts.

Last year, Samsung’s NAND Flash chip business incurred operating losses of KRW 11 trillion (approximately USD 8.3 billion), while SK Hynix’s NAND Flash chip business also faced operating losses of 8 trillion Korean won. Since the second half of last year, the aforementioned companies have halved their production capacities, finally pushing NAND Flash prices up.

Per TrendForce’s data, NAND flash prices have increased for five consecutive months. TrendForce research previously indicated that despite facing a traditional low-demand season, buyers are continuing to increase their purchases of NAND Flash products to establish safe inventory levels. In response, suppliers, aiming to minimize losses are pushing for higher prices, leading to an estimated 15–20% increase in NAND Flash contract prices in 1Q24.

Currently, the NAND Flash market is still dominated by the five major manufacturers, with Samsung and SK Hynix accounting for the lion’s share.

Samsung still firmly held the top position in the NAND Flash market, with its market share increasing from 31.4% in the previous quarter to 36.6%; next was SK Group, with its market share increasing from 20.2% in the previous quarter to 21.6%.

Following them were Western Digital, whose market share decreased from 16.9% in the previous quarter to 14.5%, Kioxia, whose market share decreased from 14.5% in the previous quarter to 12.6%, and Micron, whose market share decreased from 12.5% in the previous quarter to 9.9%.

Read more

(Photo credit: Samsung)

Please note that this article cites information from The Chosun Daily and Commercial Times.

2024-03-15

[News] Three-way Contest for HBM Dominance, Uncertainties Surrounding China’s Supply Chain Involvement

With numerous cloud computing companies and large-scale AI model manufacturers investing heavily in AI computing infrastructure, the demand for AI processors is rapidly increasing. As per a report from IJIWEI, the demand for HBM (High Bandwidth Memory), a key component among them, has been on the rise as well.

Amid the opportunity brought about by the surge in demand for computing power, which has in turn created a wave of opportunities for storage capabilities, when looking at the entire HBM industry chain, the number of China’s local companies which are able to enter the field is limited.

Faced with significant technological challenges but vast prospects, whether from the perspective of independent controllability or market competition, it is imperative to accelerate the pace of catching up.

HBM Demand Grows Against the Trend, Dominated by Three Giants

The first TSV HBM product debuted in 2014, but it wasn’t until after the release of ChatGPT in 2023 that the robust demand for AI servers drove rapid iterations of HBM technology in the order of HBM1, HBM2, HBM2e, HBM3, and HBM3e.

The fourth-generation HBM3 has been mass-produced and applied, with significant improvements in bandwidth, stack height, capacity, I/O speed, and more compared to the first generation. Currently, only three storage giants—SK Hynix, Samsung Electronics, and Micron—are capable of mass-producing HBM.

According to a previous TrendForce press release, the three major original HBM manufacturers held market shares as follows in 2023: SK Hynix and Samsung were both around 46-49%, while Micron stood at roughly 4-6%.

In 2023, the primary applications in the market were HBM2, HBM2e, and HBM3, with the penetration rate of HBM3 increasing in the latter half of the year due to the push from NVIDIA’s H100 and AMD’s MI300.

According to TrendForce’s report, SK Hynix led the way with its HBM3e validation in the first quarter, closely followed by Micron, which plans to start distributing its HBM3e products toward the end of the first quarter, in alignment with NVIDIA’s planned H200 deployment by the end of the second quarter.

Samsung, slightly behind in sample submissions, is expected to complete its HBM3e validation by the end of the first quarter, with shipments rolling out in the second quarter.

Driven by market demand, major players such as SK Hynix, Samsung, and Micron Technology are increasing their efforts to expand production capacity. SK Hynix revealed in February that all its HBM products had been fully allocated for the year, prompting preparations for 2025 to maintain market leadership.

Reportedly, Samsung, aiming to compete in the 2024 HBM market, plans to increase the maximum production capacity to 150,000 to 170,000 units per month before the end of the fourth quarter of this year. Previously, Samsung also invested KRW 10.5 billion to acquire Samsung Display’s factory and equipment in Cheonan, South Korea, with the aim of expanding HBM production capacity.

Micron Technology CEO Sanjay Mehrotra recently revealed that Micron’s HBM production capacity for 2024 is expected to be fully allocated.

Although the three major HBM suppliers continue to focus on iterating HBM3e, there is still room for improvement in single-die DRAM and stacking layers. However, the development of HBM4 has been put on the agenda.

Trendforce previously predicted that HBM4 will mark the first use of a 12nm process wafer for its bottommost logic die (base die), to be supplied by foundries. This advancement signifies a collaborative effort between foundries and memory suppliers for each HBM product, reflecting the evolving landscape of high-speed memory technology.

Continuous Surge in HBM Demand and Prices, Local Supply Chains in China Catching Up

In the face of a vast market opportunity, aside from the continuous efforts of the three giants to ramp up research and production, some second and third-tier Chinese DRAM manufacturers have also entered the HBM race. With the improvement in the level of locally produced AI processors, the demand for independent HBM supply chains in China has become increasingly urgent.

Top global manufacturers operate DRAM processes at the 1alpha and 1beta levels, while China’s DRAM processes operate at the 25-17nm level. China’s DRAM processes are approaching those overseas, and there are advanced packaging technology resources and GPU customer resources locally, indicating a strong demand for HBM localization. In the future, local DRAM manufacturers in China are reportedly expected to break through into HBM.

It is worth noting that the research and manufacturing of HBM involve complex processes and technical challenges, including wafer-level packaging, testing technology, design compatibility, and more. CoWoS is currently the mainstream packaging solution for AI processors, and in AI chips utilizing CoWoS technology, HBM integration is also incorporated.

CoWoS and HBM involves processes such as TSV (Through-Silicon Via), bumps, microbumps, and RDL (Redistribution Layer). Among these, TSV accounts for the highest proportion of the 3D packaging cost of HBM, close to 30%.

Currently, China has only a few leading packaging companies such as JCET Group, Tongfu Microelectronics, and SJSemi that possess the technology (such as TSV through-silicon via) and equipment required to support HBM production.

However, despite these efforts, the number of Chinese companies truly involved in the HBM industry chain remains limited, with most focusing on upstream materials.
With GPU acquisition restricted, breakthroughs in China’s AI processors are urgently needed both from its own self-sufficiency perspective and in terms of market competition. Therefore, synchronized breakthroughs in HBM are also crucial from Chinese manufacturers.

Read more

(Photo credit: SK Hynix)

Please note that this article cites information from IJIWEI.

  • Page 222
  • 449 page(s)
  • 2241 result(s)

Get in touch with us