Articles


2023-07-20

Panel Prices for TVs, Laptops, and Monitors Enter Rising Phase in Late July

In Q3, TV panel purchasing momentum is strong, with an estimated 7~8% growth by QoQ. Manufacturers are confident in raising prices due to increased demand, aiming to turn TV panel production profitable. As a result, TV panel prices are expected to continue rising, with increases of 2~8 USD for different sizes.

Monitor panel prices continue to rise in July, with consumer models showing higher demand than commercial ones. Brands focused on consumer models or smaller secondary brands are more likely to experience moderate price increases. Anticipated price adjustments for July: Open Cell products are up by around 0.2 ~0.5 USD, the 21.5-inch panel is up by 0.2 USD, the 23.8-inch panel is up by 0.2 USD, and 27-inch panel price remains unchanged.

In Q3, panel manufacturers consider raising prices for NB panels. Q2 saw a 30% shipment growth due to increased demand from brand customers, but Q3 demand is expected to be cautious, leading to a 3% shipment increase. Lower-end TN models have higher demand than IPS ones. Anticipated July prices: 14-inch and 15.6-inch TN models may see a slight 0.1 USD increase, while IPS models remain unchanged.

2023-07-20

Key Production Process of Micro LED Apple Watch to Allegedly Be Handed Over to LGD

According to research conducted by TrendForce, the much-anticipated Micro LED version of the Apple Watch is facing yet another delay and is now expected to be launched in the first quarter of 2026. The primary reason behind this delay is believed to be the need for reconfiguring the production supply chain.

Previously, industry speculations suggested that Apple would take charge of the core production process, particularly the massive transfer of Micro LED technology. However, recent industry research by TrendForce indicate that LG Display (LGD) might now take over this crucial aspect of the production process.

The critical process involved in the production of the Micro LED version of the Apple Watch, especially the massive transfer of Micro LED technology, has been a point of interest in the industry. It was widely speculated that Apple would handle this key engineering either at its Cupertino headquarters in the United States or potentially transfer the production to its facility in Longtan, Taiwan, for the essential massive transfer of the technology.

TrendForce understands that Apple’s decision to undertake the crucial engineering process in either the United States or Taiwan reflects their intent to have complete control over the core manufacturing process during the initial production phase. However, this approach also introduces complexities in terms of logistics and supply chain management, as the chips are set to be manufactured in Malaysia, the backplates in South Korea, and the final assembly by system integrators in China or Vietnam.

As a result, recent industry research by TrendForce indicate that Apple has finalized LGD as its primary collaborator for Micro LED production. This means that LGD will now be responsible for the critical massive transfer process. In addition to providing its own equipment and technical support, Apple is also expected to invest in LGD’s related equipment procurement to ensure a smooth transition and expedited progress in the Micro LED production pipeline.

For more information and details about the Micro LED industry, TrendForce will hold the “2023 LED Forum” on September 5th (Tuesday) from 9:30 am to 5:00 pm at the NTUH International Convention Center. The seminar has invited TrendForce’s Senior Research Vice President, Eric Chiou, as well as representatives from various industries such as Mojo Vision, ITRI, Lumus, Unikorn, Porotech, Nitride Semiconductor, Tohoku University, Coherent, InZiv, AUO, and Tianma to share the progress and related applications of Micro LED technology.

2023-07-19

NAND Flash Prices Up or Stable; DRAM Prices Continuing to Decline in Late July

DRAM Spot Market
The situation in the spot market has not noticeably changed from last week and is still showing sluggish demand. Additionally, as mentioned in previous bulletins, there has been an influx of chips stripped from decommissioned server DRAM modules. These chips primarily come from the two major South Korean suppliers’ legacy processes and are reused in PC DRAM and consumer DRAM products after software modifications. In terms of performance, the reused chips from the Korean suppliers can reach a data rate of 3200MT/s. Overall, the presence of these reused chips continues to exert downward pressure on spot prices, particularly for DDR4 products. The average spot price of mainstream chips (i.e., DDR4 1Gx8 2666MT/s) fell by 0.27% from US$1.497 last week to US$1.493 this week.

NAND Flash Spot Market

The spot market remains unaffected by the quarterly list prices of suppliers that have increased or leveled certain packaged dies, where sluggishness is seen lingering among overall demand under sporadic inquiries. In addition, concluded prices are still dropping slowly due to the lack of urgency among clients under sufficient stocks of the current spot market. 512Gb TLC wafer spots have dropped by 0.14% this week, arriving at US$1.402.

2023-07-18

In Response to AI Market Development, TSMC Kaohsiung Fab Reportedly to Transition to 2nm Node

According to media reports, in response to the booming demand in the artificial intelligence market, TSMC has altered its Kaohsiung factory plan. Originally scheduled for a 28-nanometer mature process, the factory will now be equipped with a 2-nanometer advanced process, with mass production expected to commence in the latter half of 2025. The official announcement of this factory plan is imminent.

During a investor conference held on July 20th, TSMC refrained from making any comments, citing the current quiet period. As reported by “Central News Agency,” Kaohsiung Mayor Chen Chi-mai expressed the city government’s respect for TSMC and pledged full assistance. However, it is worth noting that the 2-nanometer process requires more funding compared to the 28-nanometer process, and TSMC has already informed the Kaohsiung city government, seeking support in terms of water and power supply.

Official data indicates that TSMC’s 2-nanometer process offers a 10% to 15% performance improvement at the same power consumption or a 20% to 30% reduction in power consumption at the same performance level compared to the 3-nanometer process. The primary production base for the 2-nanometer process will be located in Hsinchu’s Baoshan area, with plans to construct four fabs. The trial production is scheduled for 2024, followed by mass production in the latter half of 2025.

(Photo credit: TSMC)

2023-07-17

What is the Progress of TSMC, Samsung, and Rapidus in the 2nm Technology Race?

In the continued sluggish consumer electronics market and amidst the booming era of artificial intelligence, semiconductor manufacturers are actively targeting high-performance chips and intensifying the competition over the 2nm process node.

TSMC, Samsung, and the newcomer Rapidus are all actively positioning themselves in the 2nm chip race. Let’s take a look at the progress of these three enterprises.

TSMC: Roadmap for 3nm and 2nm Unveiled

TSMC believes that, at the same power level, the 2nm (N2) chip speed can increase by 15% compared to N3E, or reduce power consumption by 30%, with a density 1.15 times that of its predecessor.

TSMC’s current roadmap for the 3nm “family” includes N3, N3E, N3P, N3X, and N3 AE. N3 is the basic version, N3E is an improved version with further cost optimization, N3P offers enhanced performance, planned for production in the second half of 2024, N3X focuses on high-performance computing devices, and aims for mass production in 2025. N3 AE, designed for the automotive sector, boasts greater reliability and is expected to help customers shorten their product time-to-market by 2 to 3 years.

As for 2nm, TSMC foresees the N2 process to enter mass production in 2025. Media reports from June this year indicate that TSMC is fully committed and has already commenced pre-production work for 2nm chips. In July, the TSMC supply chain revealed that the company has informed equipment suppliers to start delivering 2nm-related machines in the third quarter of next year.

Samsung Electronics: 2nm Mass Production by 2025

In June this year, Samsung announced its latest foundry technology innovations and business strategies.

Embracing the AI era, Samsung’s semiconductor foundry plans to leverage GAA advanced process technology to provide robust support for AI applications. To achieve this, Samsung unveiled detailed plans and performance levels for 2nm process mass production. They aim to realize the application of 2nm process in the mobile sector by 2025, expanding to HPC and automotive electronics in 2026 and 2027, respectively.

Samsung states that the 2nm process (SF2) offers a 12% performance improvement and 25% power efficiency increase over the 3nm process (SF3), with a 5% reduction in chip area.

Rapidus: 2nm Chip Making Progress

Established in November 2022, Rapidus gained significant attention as eight major Japanese companies, including Sony Group, Toyota Motor, SoftBank, Kioxia, Denso, NTT, NEC and MUFG jointly announced their investment in the company. Just a month after its founding, Rapidus forged a strategic partnership with IBM to jointly develop 2nm chip manufacturing technology.

According to Rapidus’ plans, 2nm chips are set to begin trial production in 2025, with mass production commencing in 2027.

[Update] Intel: Being Ambitious to Start Mass Production Of Its 20A Process in The First Half of 2024

Intel is making a vigorous stride into the semiconductor foundry market, setting its sights on rivals like TSMC and Samsung in the arena of advanced process technologies. Intel’s ambitious road map includes kick-starting mass production of its 20A process in the first half of 2024, followed by an 18A process rollout in 2H24. TrendForce points out, however, Intel has a number of significant hurdles to overcome:

Intel’s longstanding focus on manufacturing CPUs, GPUs, FPGAs, and associated I/O chipsets leaves it short of the specialized processes mastered by other foundries. Therefore, the potential success of Intel’s acquisition of Tower—a move to broaden its product line and market reach—is a matter of crucial importance.

Beyond financial segregation, the division of Intel’s actual manufacturing capabilities poses a pivotal challenge. It remains to be seen whether Intel can emulate the complete separation models like those of AMD/GlobalFoundries or Samsung LSI/Samsung Foundry, staying true to the foundry principle of not competing with clients. Adding complexity to the mix, Intel faces the potential exodus of orders from a key customer—its own design division.

(Photo credit: TSMC)

  • Page 314
  • 386 page(s)
  • 1930 result(s)

Get in touch with us