Articles


2023-06-30

A Comprehensive Overview of Global Micro OLED Manufacturers

With the release of Apple’s Vision Pro, its Micro OLED display technology has caught the attention of more people. In fact, global Micro OLED display manufacturers have been working in this field for many years. In recent years, Chinese manufacturers have been particularly active in this area. TrendForce has compiled the recent global manufacturers’ product and technological advancements in this article.

eMagin

Founded in 1996 and headquartered in New York, eMagin Corporation is a leading enterprise in Micro OLED display technology, serving world-class clients in the military, consumer, medical, and industrial markets. Since 2001, eMagin’s micro-displays have been used in AR/VR, aircraft cockpits, heads-up display systems, thermal imagers, night vision goggles, future weapon systems, and various other applications. In May 2023, eMagin announced its final merger agreement with Samsung Display, with Samsung acquiring eMagin for $218 million.

Sony

Sony began developing the foundational display technology for Micro OLED in 2009, with the aim of applying it to electronic viewfinders for cameras.

In June 2023, Apple released the Vision Pro, featuring two Sony Micro OLED displays with a size of 1.42 inches, a resolution of 3648×3144, a pixel density of 3391ppi, and a module brightness of up to 6000 nits. It has been reported that this high-spec Micro OLED screen is also priced high, with a single screen costing $350, and its production capacity is limited.

MICROOLED

MICROOLED was founded in 2007 and is headquartered in Grenoble, France. The company is dedicated to the development and manufacturing of high-resolution Micro OLED micro-displays. In January 2012, MICROOLED introduced its first 0.61-inch micro-display with 5.4 million pixels. In August 2012, STMicroelectronics invested 6 million euros in MICROOLED, and the two companies initiated collaborative development work. In 2015, MICROOLED announced that it had sold over 150,000 0.38-inch WVGA micro-displays. In 2020, MICROOLED announced a funding of 8 million euros to accelerate the development of consumer-grade AR solutions.

Kopin

Kopin Corporation was founded in 1984 and is headquartered in Westborough, Massachusetts. Since 1990, the company has been providing LCD, LCoS, and OLED micro-displays for military, enterprise, industrial, medical, and consumer wearable products. In March 2023, Kopin announced significant progress in the Helmet-Mounted Display System (HMDS) project for the F-35 fighter jet, completing performance tests for OLED micro-displays.

Kopin has also been involved in the establishment of Chinese Micro OLED manufacturers, such as Kunming O-Film (now renamed “Yunnan Visionox Opto-Electronic Technology Co., Ltd.”) and Lakefield Optoelectronics.

BOE

In August 2017, BOE announced a joint investment of 1.15 billion RMB to establish Kunming BOE Display Technology Co., Ltd. (now renamed “Yunnan Invensight Optoelectronics Technology”). The company is engaged in the production, sales, and research and development of OLED micro-displays.

BOE announced further investment of 3.4 billion RMB for the construction of a 12-inch OLED micro-display production line to meet the demand of the high-end AR/VR market in December 2019. The designed capacity is 10k wafers per month, with main products including 0.99-inch and 1.31-inch OLED micro-displays.

In March 2021, BOE disclosed on the investor interaction platform that the 8-inch silicon-based Micro OLED production line of Yunnan Invensight Optoelectronics Technology had achieved mass production in August 2019 and is currently ramping up production. The newly established 12-inch Micro OLED production line will be completed in three phases and is expected to be fully completed in January 2024, with a designed annual capacity of 5.23 million wafers.

In May 2023, BOE unveiled its 1.3-inch 4K (3552×3840) Micro OLED display at SID Display Week.

Seeya Technology

Seeya Technology was founded in October 2016 and focuses on the research and production of 12-inch silicon-based OLED micro-display. In 2022, DJI released the Goggles 2, the world’s first consumer-grade FPV goggles utilizing Micro OLED screens, which features Seeya’s 0.49-inch 1920×1080 Micro OLED micro-display.

Lakeside Optoelectronics

Lakeside Optoelectronics was established in April 2017. In May 2023, Lakeside Optoelectronics announced a partnership with Panasonic. Prior to this, Lakeside Optoelectronics had established long-term strategic partnerships with Panasonic and US-based Lighting Silicon Corporation. Panasonic’s next-generation smart VR glasses, MeganeX, will incorporate Lakeside Optoelectronics’ third-generation Micro OLED display. The product is expected to be launched in 2023.

Samsung Display

In early 2022, Samsung Display announced that it was developing Micro OLED displays, with the project in its early development stage. The company planned to start building its first production line in 2023, begin mass production of Micro OLED displays in 2024, and expand capacity in 2025 for full commercialization by 2026.

In December 2022, South Korean media reported that Samsung had started ordering equipment for a 300mm pilot production line, with SFA Engineering and AP Systems as the equipment suppliers. The production line will be located in Samsung’s A2 factory in Asan, South Korea. Samsung aims to receive the first equipment in the first quarter of 2023 and start volume production by the end of 2023, with a monthly capacity of 6,400 wafers. The production line is expected to be fully operational in 2024.

In May 2023, eMagin announced the final merger agreement with Samsung Display. Samsung Display will acquire eMagin for a price of $218 million.

LG Display

In February 2023, it was reported by South Korean media that Meta would collaborate with SK Hynix and LG Display to develop Micro OLEDs for AR/VR headsets. Meta would primarily handle semiconductor design, SK Hynix would be responsible for wafer production, and LG Display would complete the OLED deposition on wafers and perform the final step of cutting them into Micro OLED panels.

It was mentioned that SK Hynix’s Icheon headquarters in Gyeonggi Province has three DRAM production lines: M10, M14, and M16. The production line designated for Micro OLED wafer production is the M10 line, which uses 12-inch wafers as the standard and has a monthly production capacity of 100,000 wafers. If product development proceeds smoothly, they plan to start producing 30,000 wafers per month from 2025-2026. Additionally, the team is expected to utilize 28nm or 45nm nodes for Micro OLED wafer production.

Epson

Epson has been conducting research on OLED-related technologies for nearly 20 years and has released several smart glasses equipped with Epson Micro OLEDs. Epson’s VM-40 AR optical module features a 0.453-inch 1920 x 1080 Micro OLED display.

(Photo credit: Apple)

2023-06-29

AI and HPC Demand Set to Boost HBM Volume by Almost 60% in 2023, Says TrendForce

High Bandwidth Memory (HBM) is emerging as the preferred solution for overcoming memory transfer speed restrictions due to the bandwidth limitations of DDR SDRAM in high-speed computation. HBM is recognized for its revolutionary transmission efficiency and plays a pivotal role in allowing core computational components to operate at their maximum capacity. Top-tier AI server GPUs have set a new industry standard by primarily using HBM. TrendForce forecasts that global demand for HBM will experience almost 60% growth annually in 2023, reaching 290 million GB, with a further 30% growth in 2024.

TrendForce’s forecast for 2025, taking into account five large-scale AIGC products equivalent to ChatGPT, 25 mid-size AIGC products from Midjourney, and 80 small AIGC products, the minimum computing resources required globally could range from 145,600 to 233,700 Nvidia A100 GPUs. Emerging technologies such as supercomputers, 8K video streaming, and AR/VR, among others, are expected to simultaneously increase the workload on cloud computing systems due to escalating demands for high-speed computing.

HBM is unequivocally a superior solution for building high-speed computing platforms, thanks to its higher bandwidth and lower energy consumption compared to DDR SDRAM. This distinction is clear when comparing DDR4 SDRAM and DDR5 SDRAM, released in 2014 and 2020 respectively, whose bandwidths only differed by a factor of two. Regardless of whether DDR5 or the future DDR6 is used, the quest for higher transmission performance will inevitably lead to an increase in power consumption, which could potentially affect system performance adversely. Taking HBM3 and DDR5 as examples, the former’s bandwidth is 15 times that of the latter and can be further enhanced by adding more stacked chips. Furthermore, HBM can replace a portion of GDDR SDRAM or DDR SDRAM, thus managing power consumption more effectively.

TrendForce concludes that the current driving force behind the increasing demand is AI servers equipped with Nvidia A100, H100, AMD MI300, and large CSPs such as Google and AWS, which are developing their own ASICs. It is estimated that the shipment volume of AI servers, including those equipped with GPUs, FPGAs, and ASICs, will reach nearly 1.2 million units in 2023, marking an annual growth rate of almost 38%. TrendForce also anticipates a concurrent surge in the shipment volume of AI chips, with growth potentially exceeding 50%.

2023-06-28

Under the Hood: How is SiC Reshaping the Automotive Supply Chain?

The global automotive industry is pouring billions of dollars into SiC semiconductors, hoping that they could be key to transforming vehicle power systems. This shift is rapidly changing the supply chain at all levels, from components to modules.

In the previous piece “SiC vs. Silicon Debate: Will the Winner Take All?,” we explored SiC’s unique physical properties. Its ability to facilitate high-frequency fast charging, increase range, and reduce vehicle weight has made it increasingly popular in the market of electric vehicles (EVs).

Research from TrendForce shows that the main inverter has become the first area for a substantial penetration of SiC modules. In 2022, nearly 90% of all SiC usage in conventional vehicles was in main inverters. As demand grows for longer range and quicker charging times, we’re seeing a shift in vehicle voltage platforms from 400V to 800V. This evolution makes SiC a strategic focus for automotive OEMs, likely making it a standard component in main inverters in the future.

However, it is common for now that SiC power component suppliers fail to meet capacity and yield expectations – a challenge that directly affects car production schedules. This has led to a struggle for SiC capacity that is impacting the entire market segment.

Device Level: Burgeoning Strategic Alliances

Given the long-term scarcity of SiC components, leading OEMs and Tier 1 companies are vying to forge strategic partnerships or joint ventures with key SiC semiconductor suppliers, aiming to secure a steady supply of SiC.

In terms of technology, Planar SiC MOSFETs currently offer more mature reliability guarantees. However, the future appears to lie in Trench technology due to its cost and performance advantages.

Infineon and ROHM are leaders in this technology, while Planar manufacturers like STM, Wolfspeed, and On Semi are gradually transitioning to this new structure in their next-generation products. The pace at which customers embrace this new technology is a trend to watch closely.

Module Level: Highly-customized Solutions

When it comes to key main inverter component modules, more automakers prefer to define their own SiC modules – they prefer semiconductor suppliers to provide only the bare die, allowing chips from various suppliers to be compatible with their custom packaging modules for supply stability.

For instance, Tesla’s TPAK SiC MOSFET module as a model case for achieving high design flexibility. The module employs multi-tube parallelism, allowing different numbers of TPAKs to be paralleled in the same package based on the power level in the EV drive system. The bare dies for each TPAK can be purchased from different suppliers and allow cross-material platform use (Si IGBT, SiC MOSFET, GaN HEMT), establishing a diversified supply ecosystem.

China’s Deep Dive into SiC Module Design

In the vibrant Chinese market, automakers are accelerating the investment in SiC power modules, and are collaborating with domestic packaging factories and international IDMs to build technical barriers.

  • Li Auto has collaborated with San’an Semiconductor to jointly establish a SiC power module packaging production line, expected to go into production in 2024. 
  • NIO is developing its own motor inverters and has signed a long-term supply agreement with SiC device suppliers like ON Semi.
  • Great Wall Motor, amidst its transformation, has also focused on SiC technology as a key strategy. Not only have they set up their own packaging production line, but they’ve also tied up with SiC substrate manufacturers by investing in Tongguang Semiconductor.

Clearly, the rising demand for SiC is redrawing the map of the value chain. We anticipate an increase in automakers and Tier 1 companies creating their unique SiC power modules tailored for 800-900V high-voltage platforms. This push will likely catalyze an influx of innovative product solutions by 2025, thereby unlocking significant market potential and ushering in a comprehensive era of EVs.

2023-06-26

HBM and 2.5D Packaging: the Essential Backbone Behind AI Server

With the advancements in AIGC models such as ChatGPT and Midjourney, we are witnessing the rise of more super-sized language models, opening up new possibilities for High-Performance Computing (HPC) platforms.

According to TrendForce, by 2025, the global demand for computational resources in the AIGC industry – assuming 5 super-sized AIGC products equivalent to ChatGPT, 25 medium-sized AIGC products equivalent to Midjourney, and 80 small-sized AIGC products – would be approximately equivalent to 145,600 – 233,700 units of NVIDIA A100 GPUs. This highlights the significant impact of AIGC on computational requirements.

Additionally, the rapid development of supercomputing, 8K video streaming, and AR/VR will also lead to an increased workload on cloud computing systems. This calls for highly efficient computing platforms that can handle parallel processing of vast amounts of data.
However, a critical concern is whether hardware advancements can keep pace with the demands of these emerging applications.

HBM: The Fast Lane to High-Performance Computing

While the performance of core computing components like CPUs, GPUs, and ASICs has improved due to semiconductor advancements, their overall efficiency can be hindered by the limited bandwidth of DDR SDRAM.

For example, from 2014 to 2020, CPU performance increased over threefold, while DDR SDRAM bandwidth only doubled. Additionally, the pursuit of higher transmission performance through technologies like DDR5 or future DDR6 increases power consumption, posing long-term impacts on computing systems’ efficiency.

Recognizing this challenge, major chip manufacturers quickly turned their attention to new solutions. In 2013, AMD and SK Hynix made separate debuts with their pioneering products featuring High Bandwidth Memory (HBM), a revolutionary technology that allows for stacking on GPUs and effectively replacing GDDR SDRAM. It was recognized as an industry standard by JEDEC the same year.

In 2015, AMD introduced Fiji, the first high-end consumer GPU with integrated HBM, followed by NVIDIA’s release of P100, the first AI server GPU with HBM in 2016, marking the beginning of a new era for server GPU’s integration with HBM.

HBM’s rise as the mainstream technology sought after by key players can be attributed to its exceptional bandwidth and lower power consumption when compared to DDR SDRAM. For example, HBM3 delivers 15 times the bandwidth of DDR5 and can further increase the total bandwidth by adding more stacked dies. Additionally, at system level, HBM can effectively manage power consumption by replacing a portion of GDDR SDRAM or DDR SDRAM.

As computing power demands increase, HBM’s exceptional transmission efficiency unlocks the full potential of core computing components. Integrating HBM into server GPUs has become a prominent trend, propelling the global HBM market to grow at a compound annual rate of 40-45% from 2023 to 2025, according to TrendForce.

The Crucial Role of 2.5D Packaging

In the midst of this trend, the crucial role of 2.5D packaging technology in enabling such integration cannot be overlooked.

TSMC has been laying the groundwork for 2.5D packaging technology with CoWoS (Chip on Wafer on Substrate) since 2011. This technology enables the integration of logic chips on the same silicon interposer. The third-generation CoWoS technology, introduced in 2016, allowed the integration of logic chips with HBM and was adopted by NVIDIA for its P100 GPU.

With development in CoWoS technology, the interposer area has expanded, accommodating more stacked HBM dies. The 5th-generation CoWoS, launched in 2021, can integrate 8 HBM stacks and 2 core computing components. The upcoming 6th-generation CoWoS, expected in 2023, will support up to 12 HBM stacks, meeting the requirements of HBM3.

TSMC’s CoWoS platform has become the foundation for high-performance computing platforms. While other semiconductor leaders like Samsung, Intel, and ASE are also venturing into 2.5D packaging technology with HBM integration, we think TSMC is poised to be the biggest winner in this emerging field, considering its technological expertise, production capacity, and order capabilities.

In conclusion, the remarkable transmission efficiency of HBM, facilitated by the advancements in 2.5D packaging technologies, creates an exciting prospect for the seamless convergence of these innovations. The future holds immense potential for enhanced computing experiences.

 

2023-06-21

Panel Price Analysis for Late June

According to the latest panel price analysis released by TrendForce in late June, TV panel prices continue to rise as panel manufacturers maintain control over their production capacity, ensuring a balance between supply and demand.

Despite lackluster sales performance during the 618 promotion, there has been a significant increase in sales revenue, reflecting strong demand for large-sized products with higher prices. Brand customers have not adjusted their procurement needs accordingly, and overall procurement demand is expected to continue growing as they prepare for the peak season in the second half of the year. This sustained growth in demand is likely to support the continuous upward trend in panel prices. Currently, it is projected that in June, prices for 32-inch panels will increase by 2 US dollars, 43-inch panels by 3 US dollars, 50-inch panels by 7 US dollars, and 55-inch panels by 8 US dollars. Meanwhile, 65-inch and 75-inch panels are expected to see an increase of 10 US dollars.

Following two consecutive months of price hikes by Taiwanese panel manufacturers, Korean and Chinese panel manufacturers have also begun considering raising prices. However, the recent weak demand in the commercial market has led brand customers, primarily focused on commercial sales, to continuously revise down their shipment forecasts. Consequently, the inclination towards price hikes is conservative, and both buyers and sellers remain in a stalemate. It is currently anticipated that Open Cell panel prices for this month will continue the upward trend of the past two months, with an expected increase of approximately 0.2 to 0.5 US dollars. As for panel module pricing, there is a possibility of a 0.1 US dollars increase for 21.5-inch and 23.8-inch organic panels, while 27-inch panels are expected to maintain a stable trend.

The demand for notebook (NB) panels is showing a monthly improvement trend. After several months of price stability, panel manufacturers are gradually becoming more inclined to raise prices. However, brand customers remain cautiously optimistic about the demand in the second half of the year and continue to exercise restraint in their stocking pace. Therefore, the idea of price increases is still leaning towards a conservative and resistant stance. It is currently expected that panel prices in June will remain stable. However, with the ongoing increase in demand, it is not ruled out that starting from July, certain NB panel prices may experience a slight upward trend.

 

  • Page 317
  • 386 page(s)
  • 1930 result(s)

Get in touch with us