News
Following TSMC’s first plant built in Japan’s Kumamoto Prefecture, Samsung has also chosen Yokohama as the location for its new facility in Japan.
According to Japanese media NHK’s report, South Korean Samsung Electronics has decided the establishment of a new semiconductor research and development center in Yokohama, Japan. with a total investment of JPY 40 billion (approximately USD 278 million).
The Japanese government is set to provide half of the total subsidy for this investment. The project is expected to commence next year and will focus on the research and development of advanced packaging.
Additionally, Samsung plans to hire around 100 local engineers in Japan and is cautiously evaluating the possibility of collaboration with Japanese research organizations.
NHK, citing sources, reported that Japanese Prime Minister Kishida Fumio plans to announce this expanded investment in Japan soon.
Given the continuous competition between China and the United States in the semiconductor sector, the calls for strengthening the domestic semiconductor supply chain in Japan have grown louder.
Consequently, the Japanese government has been encouraging foreign chipmakers to establish a presence in Japan, aiming to reinforce domestic supply chains.
As of May this year, Kishida Fumio met with seven semiconductor giants, including Intel, Samsung, Micron, and TSMC. The meeting demonstrated a commitment to revitalize Japan’s semiconductor industry. At that time, rumors about Japan providing subsidies to Samsung already existed, sparking market discussions.
(Photo credit: Samsung)
News
On November 30th, Apple revealed an extension of its partnership with Amkor in the advanced packaging sector within the United States. Apple proudly proclaimed its role as the inaugural and principal client for Amkor’s recently established facility in Peoria, Arizona. In this collaboration, Amkor will handle the packaging of Apple chips manufactured at the nearby TSMC’s wafer fab. Worth noting, Apple is also TSMC’s leading customer at the Arizona fab.
Jeff Williams, Apple’s CEO, emphasized Apple’s unwavering commitment to American manufacturing, stating that they will continue expanding investments in the U.S. Apple silicon’s groundbreaking performance capabilities have enabled users to accomplish unprecedented tasks. The announcement highlights the anticipation of Apple silicon being manufactured and packaged in Arizona.
According to the press release, Apple and Amkor have been collaborating for over a decade, packaging chips extensively used in all Apple products. Concerning the new factory, Amkor will invest approximately $2 billion, and upon completion, it will employ over 2,000 people.
Apple also underscores that the investment in advanced manufacturing is part of the company’s commitment in 2021 to invest USD 430 billion in the U.S. economy over five years. Currently, Apple is working towards achieving this goal through direct spending with American suppliers, data center investments, U.S. capital expenditures, and other domestic expenditures.
On the other hand, Amkor outlined plans to establish a state-of-the-art manufacturing campus featuring an expansive 500,000 square feet of cleanroom space. The primary objective of the initial phase is to initiate production within the next two to three years.
Amkor aims to provide cutting-edge technology catering to high-volume semiconductor advanced packaging and testing, specifically supporting crucial markets such as high-performance computing, automotive, and communications. The newly proposed production facility will be strategically located within a semiconductor hub, surrounded by front-end wafer fabs, IDM, and existing or expanding suppliers in the field, including TSMC, Intel, Applied Materials, ASML, and others.
“Amkor has been a strategic OSAT partner to TSMC for many years,” said Dr. C.C. Wei, CEO of TSMC. “TSMC applauds Amkor for investing in the future of the semiconductor industry with us in Arizona. We share Amkor’s excitement for its significant investment and the value this facility will bring to TSMC, our customers, and the ecosystem.”
Giel Rutten, CEO from Amkor, indicated the incorporation of this new U.S. facility with Amkor’s advanced facilities across Asia and Europe serves to strengthen global extension and fosters both global and regional supply chains. Amkor’s investment is positioned to bolster them in advanced packaging and testing, concurrently reaffirming the commitment to expanding chip manufacturing in the United States.
According from the financial reports, Amkor’s two largest clients are Apple and Qualcomm. Apple accounted for 20.6% and Qualcomm 10.1%. of Amkor’s USD 7.1 billion in revenue last year.
(Image: Amkor)
Explore more
News
ASE Holdings conducted an earning conference on October 26th to unveil its Q3 financial results and offer insights into future business prospects. All eyes are on ASE’s progress in CoWoS advanced packaging. Joseph Tung, the Chief Financial Officer (CFO) of ASE, expressed confidence in AI and ongoing investments in advanced packaging, expecting a twofold increase in revenue share for advanced packaging in the coming year.
The market’s attention is keenly focused on wafer bank (a storage system used in semiconductor manufacturing to keep semiconductor wafers on hand for production, helping to streamline the manufacturing process) levels and inventory management. Tung mentioned that wafer bank levels are consistently declining and will further reduce Q4. With consumer electronics and computer clients gearing up to launch new products, inventory levels are expected to be maintained at a certain level. Overall, inventory reduction is nearing completion.
Tung emphasized that the real challenge lies not in inventory reduction but in the timing of the recovery in consumer demands and the impact of inflation. ASE remains cautious in its outlook for the upcoming year.
As for AI-related developments, Tung is optimistic about the expansion of CoWoS advanced packaging capacity through TSMC. ASE is also set to boost its production capacity for advanced packaging to cater to urgent customer demands. Next year, it is expected that revenue in advanced packaging will double. Tung emphasized that the AI era has already arrived and expects AI to extend to more terminal devices over the next few years. ASE has also invested in the development of Co-Packaged Optics (CPO) technology, ready to meet customer demands when the market is prepared.
To seize opportunities in advanced packaging, ASE previously introduced an Integrated Design Ecosystem (IDE) to optimize collaborative design tools through a platform, systematically enhancing advanced packaging architecture. This initiative has the potential to reduce design cycles by approximately 50%.
Tung pointed out that there are signs of a recovery in PC-related chip testing and packaging, and this year’s performance in automotive chip testing and packaging is expected to outperform other segments.
Looking ahead to future market conditions, Tung believes that the global semiconductor industry’s environment in the coming year will be more favorable than the current year.
(Image: ASE)
Press Releases
With the approach to the end of 2023, TrendForce revealed the tech trends in every sector, apparently, AI continues as the main focus to decide the direction of how the tech supply chain will be in the next few years, here are the seeings:
CSPs increase AI investment, driving a 38% growth in AI server shipments by 2024
HBM3e set to drive an annual increase of 172% in HBM revenue
Rising demand for advanced packaging in 2024, the emergence of 3D IC technology
NTN is set to begin with small-scale commercial tests, broader applications of this technology are on the way in 2024
6G communication to begin in 2024, with satellite communication taking center stage
Innovative entrants drive cost optimization for Micro LED technology in 2024
Intensifying competition in AR/VR micro-display technologies
Advancements in material and component technologies are propelling the commercialization of gallium oxide
Solid-state batteries poised to reshape the EV battery landscape over the next decade
BEVs in 2024 rely on power conversion efficiency, driving range, and charging efficiency
Green solutions with AI simulations emerging as a linchpin for renewable energy and decarbonized manufacturing
OLED’s expansion will across various applications driven by the innovation of foldable phones
News
On October 11th, Amkor announced the official opening of its factory located in the Yen Phong 2C Industrial Park in Bac Ninh Province, Vietnam. The new facility, occupying 57 acres, is set to become Amkor’s largest, with an investment of approximately $1.6 billion by 2035. The factory primarily focuses on providing advanced system-level packaging and testing solutions to meet the semiconductor industry’s demand for advanced packaging. However, the company has not disclosed the factory’s current production and capacity.
Multiple Players Pursue CoWoS
The ongoing AI trend continues to drive demand for Chip-on-Wafer-on-Substrate (CoWoS) technology, benefiting TSMC, which holds a significant share of CoWoS production orders. However, companies like ASE Group, Amkor, and UMC are also positioning themselves in the CoWoS packaging manufacturing space. Industry experts believe that given the current high demand for TSMC’s CoWoS production, part of this demand may potentially shift to Amkor’s factories.
Furthermore, the popular Nvidia AI chips, which are in high demand globally, utilize 2.5D packaging technology, a responsibility currently held by TSMC. Recently, Nvidia hinted at the mass production of new AI chips like the GH200 and general server chip L40S, with reports suggesting that L40S will not require 2.5D packaging. Instead, it will be shared among several backend packaging companies, including ASE, Amkor, and SPIL.
Industry source has noted the strong demand for CoWoS in the AI sector, and with TSMC’s CoWoS production capacity already unable to meet demand for several quarters, some demand may potentially shift to Amkor or Samaung’s facilities.
Amkor has announced plans to expand its advanced packaging CoWoS-like capacity. According to industry insiders, Amkor’s monthly production capacity for 2.5D advanced packaging is expected to reach approximately 3,000 wafers in early 2023, with estimates of reaching 5,000 wafers by the end of 2023 and aiming for a significant increase to 7,000 units by the end of 2024.
Additionally, ASE Group has announced its presence in advanced CoWoS-related packaging. With their fan-out chip-on-substrate (FOCoS-Bridge) packaging technology, ASE has been chosen by major chip design house to handle their backend packaging after CoW.
In mid-September, South Korean media reported that Samsung is set to introduce its FO-PLP 2.5D advanced packaging technology to catch up with TSMC in the field of advanced packaging for AI chips. Samsung’s Advanced Packaging (AVP) team began developing FO-PLP advanced packaging for 2.5D chip packaging, allowing the integration of System-on-Chip (SoC) and High Bandwidth Memory (HBM) into an interposer to create a complete chip.
It’s worth mentioning that Samsung’s FO-PLP 2.5D packaging is rectangular, while TSMC’s CoWoS 2.5D uses a circular substrate. Samsung’s FO-PLP 2.5D packaging avoids edge substrate losses and boasts higher production efficiency. However, due to the need to transplant chips from wafers onto rectangular substrates, the process is more complex.
CoWoS Demand Continues
CoWoS technology is a form of 2.5D and 3D packaging, where chips are stacked and then packaged onto a substrate, resulting in a 2.5D or 3D structure. This technology reduces chip space, while also decreasing power consumption and costs. CoWoS packaging is applied in high-performance computing, artificial intelligence, data centers, 5G, the Internet of Things, automotive electronics, and other fields.
TrendForce research indicates a growing demand for advanced packaging technologies for AI and HPC chips. Currently, TSMC’s CoWoS is the primary choice for AI server chip production. CoWoS packaging mainly consists of CoW (Chip on Wafer), integrating various logic ICs (such as CPUs, GPUs, ASICs, etc.) and HBM memory, while oS (On Substrate) integrates CoW elements using Solder bump interconnects and packages them on a substrate. These CoWoS packages become the primary computing units on server motherboards, together with other components like networks, storage, power supply units (PSUs), and other I/O units, forming complete AI server systems.
Explore more
(Photo credit: Amkor)