Apple Watch


2023-09-06

[News] Micro LED Transfer Tech Moving Towards ‘Hybrid Approach

LED

According to a report by TechNews, TrendForce held the Micro LED Forum 2023 on the 5th, inviting numerous companies to share insights on the next-generation display market trends. Eric Chiou, Senior Research Vice President at TrendForce, believes that Micro LED technology is making significant strides in the metaverse sector this year. Many technological challenges need to be overcome, such as semiconductor integration techniques. Ever since AUO announced the mass production of Micro LED watches, cost reduction has become a major focus for many companies.

Chiou stated that to cut costs, chips are the most effective components to optimize. Manufacturers are shifting from using 6-inch wafers to 8-inch wafers for chip production to help reduce costs. In terms of mass transfer techniques, a few years ago, stamp transfer technology was in use, but the industry has been increasingly leaning towards laser transfer while striving for efficiency. In the future, there’s a strong possibility of moving towards a “hybrid transfer” approach, which combines stamp transfer and laser bonding methods.

For instance, companies purchasing equipment might conduct in-house experiments and modify equipment to suit their needs. Equipment providers are also drawing from industry experience to create new solutions, offering next-generation equipment to inexperienced customers, making the production process more practical.

Regarding product development, the most evident direction for Micro LED is in smartwatches. Chiou revealed that by 2026, the cost of a 2.12-inch Micro LED Apple Watch from Apple could potentially drop to $100, compared to the current $40-50 for OLED displays. This suggests that Micro LED may pose strong competition to OLED in the near future.

TrendForce anticipates that Apple Watch will attract more brands to invest in the development and promotion of Micro LED wearable devices, leading to a compound annual growth rate of 873% from 2022 to 2027. This year, the Micro LED chip production value is approximately $27 million, and with the market’s continuous expansion, it is expected to reach $600 million. The compound annual growth rate from 2022 to 2027 is projected to be 111%.

Dr. Mingchi Hsu, Special Assistant at the AUO Display Development Center, mentioned during the forum that the challenges of mass transfer in Micro LED technology were previously considered bottlenecks, but significant improvements have been made in the last two years. As for the inspection and repair aspects, AUO has developed its own equipment and has already completed its development.

Porotech’s primary technologies include Dynamic Pixel Tuning (DPT) and PoroGaN technology. Daniel He, Director of Product and Marketing Taiwan Branch Manager at Porotech, disclosed that they are currently mass-producing 8-inch GaN wafers and collaborating with Taiwanese foundries. Although they can produce 12-inch GaN chips, they plan to observe market response before proceeding.

Mr. Lin Mao-Song, General Manager of Coherent Technologies, a leading laser source technology company, stated that the inspection and repair phase in Micro LED manufacturing might be longer than the actual manufacturing process. A 99.95% yield rate implies a high repair proportion, making it crucial to enhance production yield and reduce costs. Laser technology plays a significant role in increasing production speed and yield, with excimer laser being the best choice for repair and mass transfer, achieving yields of over 99.99%.

2023-08-11

[News] LGD Set to Unveil 136-Inch Micro LED Display Next Year in Collaboration with Unikorn Semiconductor

According to the news from Taiwan tech media, TechNews, in a groundbreaking move, Samsung has unveiled its inaugural 110-inch Micro LED television, signaling a significant foray into the premium TV segment. Not to be outdone, competitor LG Display (LGD) is reportedly poised to make its own mark by launching a 136-inch Micro LED smart display next year, with initial applications targeted at theaters, indoor conference rooms, and other similar venues.

According to insider sources, LGD is gearing up for mass production of its impressive 136-inch Micro LED display, expected to commence around July of the upcoming year. The initial production goal is set at over 100 units, with deployment primarily earmarked for theaters, indoor conference facilities, and possibly large-scale corporate headquarters.

Notably, LGD’s ambitious 136-inch smart display project is a collaborative effort with Micro LED from Unikorn Semiconductor, which is a subsidiary under Ennostar. Unikorn emphasized the paramount significance of this partnership, affirming substantial breakthroughs in both quality and yield through their joint endeavors. By elaborating during a recent press conference, underlining the imminent production review phase scheduled for the third and fourth quarters – a pivotal juncture that could potentially elevate Micro LED’s contribution to Unikorn’s revenue to a significant proportion. Interestingly, this timeline harmonizes with LGD’s projected rollout of their Micro LED smart display.

But, Ennostar has no comment regarding this development, refraining from disclosing any customer-related particulars.

LGD is currently making assertive strides in the fiercely competitive Micro LED technology landscape. Notably, LGD recently acquired a set of 14 U.S. patents related to Micro LED technology from Taiwanese firm Ultra Display Technology, according to reports from, The Elec, a South Korean media outlet. These patents encompass crucial transfer processes, underscoring LGD’s strategic approach.

Furthermore, whispers from the industry suggest that Apple’s extensive Micro LED transfer process for the Apple Watch could see a significant handover to LGD. This would entail LGD overseeing an integrated workflow, encompassing chip manufacturing, backplane assembly, and transfer processes, while Apple retains responsibility for device design and pivotal technical support. The anticipated mass production timeline for the Micro LED-equipped Apple Watch has been deferred to the first quarter of 2026, a delay likely attributed to the recalibration of the production supply chain.

(Photo credit: LGD)

2023-07-20

Key Production Process of Micro LED Apple Watch to Allegedly Be Handed Over to LGD

According to research conducted by TrendForce, the much-anticipated Micro LED version of the Apple Watch is facing yet another delay and is now expected to be launched in the first quarter of 2026. The primary reason behind this delay is believed to be the need for reconfiguring the production supply chain.

Previously, industry speculations suggested that Apple would take charge of the core production process, particularly the massive transfer of Micro LED technology. However, recent industry research by TrendForce indicate that LG Display (LGD) might now take over this crucial aspect of the production process.

The critical process involved in the production of the Micro LED version of the Apple Watch, especially the massive transfer of Micro LED technology, has been a point of interest in the industry. It was widely speculated that Apple would handle this key engineering either at its Cupertino headquarters in the United States or potentially transfer the production to its facility in Longtan, Taiwan, for the essential massive transfer of the technology.

TrendForce understands that Apple’s decision to undertake the crucial engineering process in either the United States or Taiwan reflects their intent to have complete control over the core manufacturing process during the initial production phase. However, this approach also introduces complexities in terms of logistics and supply chain management, as the chips are set to be manufactured in Malaysia, the backplates in South Korea, and the final assembly by system integrators in China or Vietnam.

As a result, recent industry research by TrendForce indicate that Apple has finalized LGD as its primary collaborator for Micro LED production. This means that LGD will now be responsible for the critical massive transfer process. In addition to providing its own equipment and technical support, Apple is also expected to invest in LGD’s related equipment procurement to ensure a smooth transition and expedited progress in the Micro LED production pipeline.

For more information and details about the Micro LED industry, TrendForce will hold the “2023 LED Forum” on September 5th (Tuesday) from 9:30 am to 5:00 pm at the NTUH International Convention Center. The seminar has invited TrendForce’s Senior Research Vice President, Eric Chiou, as well as representatives from various industries such as Mojo Vision, ITRI, Lumus, Unikorn, Porotech, Nitride Semiconductor, Tohoku University, Coherent, InZiv, AUO, and Tianma to share the progress and related applications of Micro LED technology.

2023-06-30

Delay in Mass Production of Micro LED Apple Watch until 2026, According to Industry Sources

Apple has finally launched the Vision Pro, an MR device equipped with Micro OLED, but the debut of the Apple Watch with Micro LED panels has been repeatedly delayed. According to a report from TechNews, industry insiders revealed that the production timeline for the Micro LED Apple Watch has been pushed back once again, from the second quarter of 2025 to the first quarter of 2026.

Over the past decade, Apple has invested at least $1 billion in developing Micro LED panels, aiming to reduce reliance on Samsung and strengthen control over critical component supplies. Once in mass production, Apple intends to execute the crucial “mass transfer” process on its own. This highlights Apple’s cautious approach in researching and developing Micro LED technology, which is still in the sample phase due to challenging production techniques and higher manufacturing costs.

In the Micro LED project, Apple has partnered with ams Osram for the development of Micro LED components, collaborated with LG Display for backplate production, and enlisted TSMC to manufacture 12-inch silicon wafers. Initially, Micro LED technology will be introduced in the Apple Watch Ultra model before gradually expanding to other product lines such as iPad and MacBook, with the ultimate plan of incorporating it into the iPhone.

Currently, the Apple Watch utilizes OLED technology, which has been in use since the launch of the first Apple Watch model in 2015. In comparison to OLED screens, Micro LED displays offer higher brightness and overcome issues such as screen aging and differential aging, making them a promising advancement.

2023-05-05

Ennostar may take the lead on Micro LED chips from the delayed of Apple Watch launches?

Apple’s plan to release the first Apple Watch with a Micro LED display in 2024 has reportedly been delayed until the second half of 2025 or later due to production challenges. However, this delay shows Apple’s cautious approach to technology and evaluation. This delay shows Apple’s prudence and assessment of technology, but it also brings new opportunities for Ennostar, which was previously considered only a second supplier

According to market research firm DSCC’s, the new Apple Watch will initially adopt Osram’s Micro LED chips, and Epistar(under Ennostar), will be responsible for shipping related components. However, some insiders have revealed that Osram’s technology produces Vertical Chips, which are different from Epistar’s technology and are unlikely to be used in the same project simultaneously.

Epistar’s current chip technology is Flip Chips, Ennostar has stated that American brands are currently collaborating with European suppliers, and Epistar “may have a chance” to be the second supplier, however, ‘the second supplier” may not have a chance to join the cast until 2026.

DSCC mentioned that Epistar is responsible for shipping related components, which differs from what Ennostar said “second supplier”. Technically speaking, Ennostar is more likely to be a “parallel competitor” to Osram since the process of Vertical Chips versus Flip Chips are not on the same technical base. From this perspective, obviously, Apple has dual strategies on Micro LED from adopting Osram’s Vertical Chips as the core and maintaining the technical connections with Taiwanese manufacturers at the same time, which Ennostar may have a shot to ramp up to the main supplier again to take off the “second source” label.

Does the Micro LED process hint at Apple’s product line planning?

Micro LED chips now are mainly categorized into Vertical, Lateral, and Flip chips. According to industry insiders, Osram began developing Micro LED in 2019 but only focused on vertical chips due to patent issues. Currently, only 3 companies in the world have patents for Vertical Chips, and Osram is likely to gain a competitive advantage in Micro LED through these patents. As a result, the company is targeting the development of watches, phones, and AR glasses, and has been collaborating with Apple on watch projects in Germany since 2019. The size of the watch chip produced in collaboration with Apple is approximately 8um.

Meanwhile, Osram announced in 2021 that it is expanding its LED factory in Kulim, Malaysia with an investment of approximately $850 million, and plans to produce Mini LED and Micro LED chips in its 8-inch factory, with mass production expected in 2024. The company also mentioned last year that it plans to produce small-sized products by 2024, and this small-sized product is very likely to be Apple’s Apple Watch.

As for companies such as PlayNitride, Epistar, and Chinese manufacturers that are working on Micro LED technology, they are all using flip chips. PlayNitride stated that they have the opportunity to produce Lateral Chips as client’s request, and Vertical Chips may be produced for AR and VR in the future. “It still depends on the customer’s application to determine what kind of chips matches their products, e.g. Vertical Chips can bring higher PPI with a smaller size of chips.” PlayNitirde said.

Due to differences in the position of electrodes among Vertical chips, Lateral chips, and Flip Chips, give their own pros and cons in each production process. The advantage of Vertical Chips is that they can be made smaller, and the yield rate is higher as the size gets smaller. However, it is difficult to test and repair them once all the Micro LEDs are arranged and connected for testing, so the yield rate may decrease during the bonding process.

Vertical Chips are now suitable for use in the fields of watches, smartphones, and AR glasses, while Lateral Chips are used for other applications like automotive or large displays. However, AUO plans to produce Micro LED watches using Flip Chips, showing that different technologies can still be applied to similar products. In the future, using Vertical Chips may be necessary for developing AR glasses, which may explain why Apple is using this technology in its Apple Watch.

With the dawn of the era of Micro LED mass production, what will be Apple’s strategy?

Apple’s influence in display technology development affects other brands’ adoption attitudes. To reduce risks, Apple is not taking sides as different technologies and processes are involved, which may pose challenges to transfer technology or backplane technology, affecting the entire Micro LED supply chain. For the next generation Apple Watch, Apple is mainly working with Osram for Vertical MicroLED Chips, but may also collaborate with Taiwanese companies on Lateral or Flip Chips in the future.(Image credit: TechNews)

  • Page 2
  • 3 page(s)
  • 12 result(s)

Get in touch with us