Apple


2024-05-29

[News] Samsung Reportedly Increasing Production of Made-in-China Phones

As reported by the South Korean tech media outlet TheElec, South Korean smartphone giant Samsung is said to be planning to increase the production of phones manufactured by joint development manufacturers (JDM) in China from 4.4 million to 6.7 million units this year. The increased output from its JDM partners indicates that outsourced orders will account for 25% of Samsung’s smartphone production target for the year.

Reportedly, its JDM partners typically handles the production of low-end smartphones, being responsible for design and component procurement while Samsung provides the brand. For the past couple of years, the company has used JDM partners like Wintech to reduce its production cost for smartphones.

Furthermore, collaborating with JDM partners also enables Samsung to leverage the local manufacturers’ expertise in understanding trends. For instance, with the assistance of JDM partnerships, the Galaxy C55 was optimized locally for the Chinese market.

The number of Samsung smartphones produced by these JDM partners has also been steadily increasing in recent years. Data indicates that in 2019, JDM-produced phones accounted for less than 7% of Samsung’s smartphone output, but this year, that proportion has risen to 25%.

Regarding the current smartphone market in China, the China Academy of Information and Communications Technology (CAICT) has released its April 2024 analysis of the Chinese mobile phone market, showing a year-on-year increase of 28.8% in mobile phone shipments to 24.071 million units during the period.

According to the data from CAICT, in terms of brands, local brands dominated with 85.5% of the shipments, approximately 20.576 million units, while overseas brands, including Apple, accounted for nearly 3.5 million units.

Read more

(Photo credit: Samsung)

Please note that this article cites information from TheElec and cnBeta.

2024-05-22

[COMPUTEX 2024] VR and AR Devices Undergo Further Transformation to Shape a New Vision for Virtual-Real Integration

Just as generative AI is revolutionizing industries worldwide today by creating new opportunities, the concept of the Metaverse in 2021 was similarly embraced by technology giants as a strategic goal and vision for the future of the entire tech sector.

Microsoft, for instance, targeted the corporate segment of the Metaverse, showcasing the use of its mixed reality (MR) device, HoloLens 2, in manufacturing operations. NVIDIA introduced the Omniverse platform for image simulation, thereby facilitating the development of virtual environments within the Metaverse. There were also rumors about Google and Apple launching new virtual reality (VR) head-mounted devices. Perhaps most notably, Facebook’s name change to Meta was a clear indication of its commitment to this emerging field.

As Hype Fades, More Hardware and Content Are Needed to Strengthen the Foundation of the Metavers

Despite initial market optimism, the reality was that wearable technology had not reached maturity, and the quality of virtual content experiences fell short of expectations. As a result, there was insufficient momentum to drive the Metaverse forward in subsequent market developments. Many tech companies established departments dedicated to the Metaverse, but due to lackluster results and issues with resource allocation, these departments often faced workforce reductions, downsizing, or even complete dissolution.

Declining enthusiasm for the Metaverse primarily stems not from a flaw in the idea of blending virtual and real worlds, but from the grandiosity of its concept. The essence of Industry 4.0, after all, revolves around enhancing production efficiency through the data-driven integration of physical and digital realms.

This is a proven approach. Nevertheless, the challenge with the Metaverse lies in its ambitious scale. Without adequate software and hardware support, efforts to expand and implement it often fall short, yielding minimal benefits and, thus, diminishing its commercial appeal.

Essentially, the widespread adoption of technologies like head-mounted devices and a rich content library are vital for industry growth. In response, companies that develop VR and augment reality (AR) in recent years have pivoted their focus from the broader environmental framework towards improving wearable devices and creating engaging content. In doing so, they aim to boost the practical value of adopting VR and AR.

From Virtual Interaction to Spatial Computing, the Scope of Applications for Head-mounted Devices Continues to Expand

In 2023, according to TrendForce’s analysis, Meta’s Quest series dominated the global VR and MR device market, securing nearly 70% of total device shipments. This significant market share places Meta at the forefront, with Sony’s PS VR series ranking second, followed by other manufacturers like PICO and HTC. Entering the fray in 2024, Apple introduced its Vision Pro, which is expected to claim a 6% share of the global market.

Meta’s latest offering, the Quest 3, has adopted pancake lenses that enhance image clarity while slimming down the device’s profile. It is powered by the Qualcomm Snapdragon XR2 Gen 2, a (SoC) tailored for head-mounted devices that significantly boosts GPU and AI processing capabilities.

The Quest 3 marks a pivotal shift for Meta from VR to MR. Equipped with dual front-facing RGB cameras and advanced features like depth projection and room mapping, the Quest 3, alongside the higher-end Quest Pro, supports a range of MR applications. Additionally, the tracking capabilities of the Quest 3 are augmented by computer vision and machine learning technologies. With Meta’s ongoing collaboration with LG on new product development, the focus is now on extended reality (XR) applications linked with the television ecosystem.

Apple’s Vision Pro, which was launched in February 2024, has reignited market interest in VR.

This device fills a previously unaddressed gap in Apple’s portfolio by offering a VR head-mounted device that integrates seamlessly with iPhones, iPads, and other devices within Apple’s ecosystem, thereby enabling functions like image and video projection onto larger screens. The introduction of the Vision Pro brought the concept of spatial computing into the limelight, enabling users to interact with virtual objects in a natural and intuitive way and thus infusing fresh perspectives into the industry.

Moreover, at CES 2024, Sony unveiled an XR head-mounted device dubbed a “spatial content creation system.” Like the Apple Vision Pro, this device leverages the advantages of spatial computing. It’s designed as a commercial tool for developing 3D content, offering users precise and intuitive control over virtual objects, thereby simplifying the process of creating 3D models.

From Taiwan, ASUS has recently introduced its first AR glasses, the AirVision M1. These glasses are designed to function as a secondary screen, ideal for use outdoors or in situations where extra screens are necessary at home.

Taiwan-based Companies Expand into the Supply Chain for Headsets, Focusing on Optics, Chips, and Assembly

TrendForce analyst P. K. Tseng said that a critical aspect of the transformation for VR head-mounted devices is the increasing need for key components that are lighter and more compact, particularly pancake lenses, which are gaining importance due to their contribution to volume reduction.

However, the technological complexity and higher cost of manufacturing these advanced optical components mean that suppliers, such as GSEO and Young Optics, are relatively limited. This presents a blue ocean market opportunity, likely attracting more manufacturers to develop pancake lens components.

Furthermore, the trend is expected to drive demand for smaller-sized panels. While mainstream LCD panels continue to be widely used, the advent of devices like the Apple Vision Pro is anticipated to increase the adoption rate of Micro OLED panels.

Additionally, as standalone virtual devices become more mainstream in product design, and as the need for processing large volumes of image and sensor data independently by SoCs grows, demand will rise for dedicated chips used in VR and AR devices. For instance, MediaTek is rumored to be developing an exclusive AR chip for Meta.

System or device assembly is a key area of focus for Taiwan-based companies, particularly evident in the efforts of major ODMs like Quanta and Foxconn. These companies are enhancing their VR and AR hardware manufacturing through various strategies, including partnerships, mergers and acquisitions, and investment initiatives.

In the VR device supply chain, the strength of system assemblers lies in their ability to offer comprehensive product solutions, which expands the options available to prospective clients. The assembly of VR and AR devices presents unique challenges due to the necessity for high-quality image rendering and real-time motion capture. Numerous components are involved in the process.

Not all VR and AR device brands can develop head-mounted devices completely in-house, as demonstrated by companies like Meta and Sony. For newer market entrants, securing a comprehensive product solution that allows for future customization is a more desirable strategy. This demands that system assemblers have significant expertise in relevant technologies and ODM capabilities. As such, as opportunities in the VR and AR market continue to emerge, these assemblers are well-prepared to offer solutions for head-mounted devices.

Generative AI and Added-Value from Applications Will Sustain Future Growth Momentum

Beyond hardware, the focus on creating more content and valuable applications will be a major topic in the next phase of VR industry’s development, with generative AI poised to play a pivotal role.

Taking gaming as an example, VR game development is known to be exceedingly time-consuming, requiring developers to dedicate substantial amounts of time to coding. As a result, the games often lack diversity, customization, and meaningful game mechanics.

However, leveraging generative AI can expedite the game development process without sacrificing quality or increasing costs. Recent market analyses suggest that the adoption of generative AI could significantly reduce the time required to create XR learning modules from the 5-10 days typically seen in 2021 to less than 30 minutes today.

Consequently, major game engine providers like Unity are seizing this business opportunity. In mid-2023, Unity introduced a suite of generative AI development solutions tailored for VR game production. These solutions can be employed to create characters, objects, assets, and sound effects, thus significantly reducing development costs.

According to TrendForce’s research, global shipments of VR head-mounted devices are projected to register a slight year-on-year drop of 1.8%, but the annual total is still expected to surpass 9.3 million units.

Furthermore, with the releases of many new products ranging from chips and peripherals to complete systems, many of which were showcased at this year’s CES and MWC, there is strong bullish sentiment regarding the development of the VR industry. The strategies of major manufacturers for VR and AR devices also demonstrate intense efforts to explore new use cases beyond existing applications, or to expand into other commercial sectors such as remote assistance, virtual learning, and simulation training.

Additionally, in many countries, VR and AR are now being incorporated into medical treatments, such as psychological therapy and physical rehabilitation. Although the progress in promoting VR and AR technologies still depends on factors like pricing, specifications, and user experience, the expansion into new application markets is a positive development, particularly given the current shortage of content.

Therefore, the added-value provided by new applications will be a key determinant of the VR market’s growth momentum. Furthermore, the efficiency of using generative AI in content production holds the potential to propel device manufacturers into the next technological generation.

Join the AI grand event at Computex 2024, alongside CEOs from AMD, Intel, Qualcomm, and ARM. Discover more about this expo! https://bit.ly/44Gm0pK

(Photo credit: Apple)

2024-05-20

[News] Apple COO Rumored to Make Secret Visit to TSMC, Booking Advanced Capacity for AI In-house Chips

As Apple keeps advancing in AI as well as developing its own in-house processors, industry sources indicated that the tech giant’s Chief Operating Officer (COO) Jeff Williams recently made a visit to TSMC, and was personally received by TSMC’s President, C.C. Wei, according a report by Economic Daily News.

The low-profile visit was made to secure TSMC’s advanced manufacturing capacity, potentially 2nm process, booked for Apple’s in-house AI-chips, according to the report.

Apple has been collaborating with TSMC for many years on the A-series processors used in iPhones. In recent years, Apple initiated the long-term Apple Silicon project, creating the M-series processors for MacBook and iPad, with Williams playing a key role. Thus, his recent visit to Taiwan has garnered significant industry attention.

Apple did not respond to the rumor. TSMC, on the other hand, has maintained its usual stance, not commenting on market speculations related to specific customers.

According to an earlier report from The Wallstreet Journal, Apple has been working closely with TSMC to design and produce its own AI chips tailored for data centers in the primary stage. It is suggested that Apple’s server chips may focus on executing AI models, particularly in AI inference, rather than AI training, where NVIDIA’s chips currently dominate.

Also, in a bid to seize the AI PC market opportunity, Apple’s new iPad Pro launched in early May has featured its in-house M4 chip. In an earlier report by Wccftech, Apple’s M4 chip adopts TSMC’s N3E process, aligning with Apple’s plans for a major performance upgrade for Mac.

In addition to Apple, with the flourishing of AI applications, TSMC has also reportedly beening working closely with the other two major AI giants, NVIDIA and AMD. It’s reported by the Economic Daily News that they have secured TSMC’s advanced packaging capacity for CoWoS and SoIC packaging through this year and the next, bolstering TSMC’s AI-related business orders.

Read more

(Photo credit: TSMC)

Please note that this article cites information from Economic Daily NewsThe Wallstreet JournalWccftech.
2024-05-13

[News] Apple’s Foldable Devices Reportedly to Debut with iPad, Placing Orders on Samsung

Industry sources cited by a report from Economic Daily News have indicated that Apple is accelerating the development of its foldable device, moving up the expected launch from 2026 to 2025. Apple has reportedly placed orders for flexible panels from Samsung, with plans for the foldable device to debut with the iPad before expanding to the iPhone.

Moreover, the smartphone market leader is said to have already secured a supply of flexible panels from Samsung in the first half of this year, hinting at its determination to enter the foldable market.

Hinges are expected to be the most crucial and newly added component for Apple’s foldable device, experiencing a surge in demand. Shin Zu Shing, Taiwanese supplier for foldable smartphone hinges, having cooperated with Apple in the field for many years, stands to benefit greatly.

In addition,  other Taiwanese Apple supply chain partners, including Foxconn, Largan Precision, and Pegatron, are anticipated to benefit similarly as with existing iPad and iPhone production. The aforementioned Apple suppliers typically refrain from commenting on individual customer and order dynamics.

A report from SamMobile also indicated that, Apple may have signed a contract with Samsung Display (SDC) for the supply of foldable displays. It is estimated in the same report that limited supplies will begin in 2025, ramping up to mass production in 2026. By 2027, the supply is expected to reach 65 million units, increasing to 100 million units in 2028.

Additionally, the ordered display sizes are larger than those of existing iPhones, indicating that the display components procured by Apple from Samsung will be used in new foldable device products.

Industry sources cited in the report from Economic Daily News believe that Apple’s first foldable device will be unveiled by the end of 2025 or early 2026, targeting the ultra-high-end market segment. It is expected to come in two sizes: 7.9 inches and 8.3 inches, competing against foldable devices from Samsung and Huawei.

According to the analysis released by TrendForce in the second half of last year, Apple’s development in the folding field still requires time. Apple’s foray into foldables has been tepid, to say the least.

TrendForce reports that global shipments of foldable phones reached 15.9 million units in 2023, marking a 25% YoY increase and accounting for approximately 1.4% of the overall smartphone market. In 2024, shipments are expected to rise to about 17.7 million units, growing by 11% and slightly increasing the market share to 1.5%. However, this growth rate remains below market expectations, with the segment’s share predicted to exceed 2% only by 2025.

Read more

(Photo credit: Apple)

Please note that this article cites information from Economic Daily News and SamMobile.

2024-05-13

[News] Tech Giants Pick up Steam in AI Sector

As a strategic technology empowering a new round of technological revolution and industrial transformation, AI has become one of the key driving forces for the development of new industrialization. Fueled by the ChatGPT craze, AI and its applications are rapidly gaining traction worldwide. From an industrial perspective, NVIDIA currently holds almost absolute dominance in the AI chip market.

Meanwhile, major tech companies such as Google, Microsoft, and Apple are actively joining the competition, scrambling to seize the opportunity. Meta, Google, Intel, and Apple have launched the latest AI chips in hopes of reducing reliance on companies like NVIDIA. Microsoft and Samsung have also reportedly made investment plans for AI development.

  • Microsoft Announced an Investment Plan of over USD 11 Billion

Recently, according to multiple global media reports, Microsoft is developing a new AI mega-model called MAI-1. This model far exceeds some of Microsoft’s previously released open-source models in scale and is expected to rival well-known large models like Google’s Gemini 1.5, Anthropic’s Claude 3, and OpenAI’s GPT-4 in terms of performance. Reports suggest that Microsoft may demonstrate MAI-1 at the upcoming Build developer conference.

In response to the growing demand for AI computing, Microsoft recently announced a plan to invest billions of dollars in building AI infrastructure in Wisconsin. Microsoft stated that this move will create 2,300 construction jobs, and could contribute to up to 2,000 data center jobs when completing construction.

Furthermore, Microsoft will establish a new AI lab at the University of Wisconsin-Milwaukee to provide AI technology training.

Microsoft’s investment plan in the US involves an amount of USD 3.3 billion, which plus its investments previously announced in Japan, Indonesia, Malaysia and Thailand amount to over USD 11 billion in reference to AI-related field.

Microsoft’s recent announcements shows that it plans to invest USD 2.9 billion over the next two years to enhance its cloud computing and AI infrastructure in Japan, USD 1.7 billion within the next four years to expand cloud services and AI in Indonesia, including building data centers, USD 2.2 billion over the next four years in Malaysia in cloud computing and AI, and USD 1 billion to set up the first data center in Thailand, dedicated to providing AI skills training for over 100,000 people.

  • Apple Reportedly Developing in-House AI Chip for Data Center

Apple has also unveiled its first AI chip, M4. Apple introduced that the neural engine in M4 chip is the most powerful one the company has ever developed, outstripping any neural processing unit in current AI PCs. Apple further emphasized that it will “break new ground” in generative AI this year, bringing transformative opportunities to users.

According to a report from The Wall Street Journal, Apple has been working on its own chips designed to run AI software on data center servers. Sources cited in the report revealed that the internal codename for the server chip project is ACDC (Apple Chips in Data Center). The report indicates that the ACDC project has been underway for several years, but it’s currently uncertain whether this new chip will be commissioned and when it might hit the market.

Tech journalist Mark Gurman also suggests that Apple will introduce AI capabilities in the cloud this year using its proprietary chips. Gurman’s sources indicate that Apple intends to deploy high-end chips (Similar to those designed for Mac) in cloud computing servers to handle cutting-edge AI tasks on Apple devices. Simpler AI-related functions will continue to be processed directly by chips embedded in iPhone, iPad, and Mac devices.

  • Samsung might Start Pilot production for AI Inference Chip Mach-1

As per industry sources cited by South Korean media outlet ZDNet Korea, Samsung Electronics’ AI inference chip, Mach-1, is set to begin prototype production using a multi-project wafer (MPW) approach and is expected to be based on Samsung’s in-house 4nm process.

Previously at a shareholder meeting, Samsung revealed its plan to launch a self-made AI accelerator chip, Mach-1, in early 2025. As a critical step in Samsung’s AI development strategy, Mach-1 chip is an AI inference accelerator built on application-specific integrated circuit (ASIC) design and equipped with LPDDR memory, making it particularly suitable for edge computing applications.

Kyung Kye-hyun, head of Samsung Electronics’ DS (Semiconductor) division, stated that the development goal of this chip is to reduce the data bottleneck between off-chip memory and computing chips to 1/8 through algorithms, while also achieving an eight-fold improvement in efficiency. He noted that Mach-1 chip design has gained the verification of field-programmable gate array (FPGA) technology and is currently in the physical implementation stage of system-on-chip (SoC), which is expected to be ready in late 2024, with a Mach-1 chip-driven AI system to be launched in early 2025.

In addition to developing AI chip Mach-1, Samsung has established a dedicated research lab in Silicon Valley focusing on general artificial intelligence (AGI) research. The intention is to develop new processors and memory technologies capable of meeting future AGI system processing requirements.

Read more

(Photo credit: Pixabay)

Please note that this article cites information from WeChat account DRAMeXchangeMicrosoftThe Wall Street Journal , Bloomberg and ZDNet Korea.

  • Page 9
  • 33 page(s)
  • 165 result(s)

Get in touch with us