AUO


2023-09-06

[News] Micro LED Transfer Tech Moving Towards ‘Hybrid Approach

LED

According to a report by TechNews, TrendForce held the Micro LED Forum 2023 on the 5th, inviting numerous companies to share insights on the next-generation display market trends. Eric Chiou, Senior Research Vice President at TrendForce, believes that Micro LED technology is making significant strides in the metaverse sector this year. Many technological challenges need to be overcome, such as semiconductor integration techniques. Ever since AUO announced the mass production of Micro LED watches, cost reduction has become a major focus for many companies.

Chiou stated that to cut costs, chips are the most effective components to optimize. Manufacturers are shifting from using 6-inch wafers to 8-inch wafers for chip production to help reduce costs. In terms of mass transfer techniques, a few years ago, stamp transfer technology was in use, but the industry has been increasingly leaning towards laser transfer while striving for efficiency. In the future, there’s a strong possibility of moving towards a “hybrid transfer” approach, which combines stamp transfer and laser bonding methods.

For instance, companies purchasing equipment might conduct in-house experiments and modify equipment to suit their needs. Equipment providers are also drawing from industry experience to create new solutions, offering next-generation equipment to inexperienced customers, making the production process more practical.

Regarding product development, the most evident direction for Micro LED is in smartwatches. Chiou revealed that by 2026, the cost of a 2.12-inch Micro LED Apple Watch from Apple could potentially drop to $100, compared to the current $40-50 for OLED displays. This suggests that Micro LED may pose strong competition to OLED in the near future.

TrendForce anticipates that Apple Watch will attract more brands to invest in the development and promotion of Micro LED wearable devices, leading to a compound annual growth rate of 873% from 2022 to 2027. This year, the Micro LED chip production value is approximately $27 million, and with the market’s continuous expansion, it is expected to reach $600 million. The compound annual growth rate from 2022 to 2027 is projected to be 111%.

Dr. Mingchi Hsu, Special Assistant at the AUO Display Development Center, mentioned during the forum that the challenges of mass transfer in Micro LED technology were previously considered bottlenecks, but significant improvements have been made in the last two years. As for the inspection and repair aspects, AUO has developed its own equipment and has already completed its development.

Porotech’s primary technologies include Dynamic Pixel Tuning (DPT) and PoroGaN technology. Daniel He, Director of Product and Marketing Taiwan Branch Manager at Porotech, disclosed that they are currently mass-producing 8-inch GaN wafers and collaborating with Taiwanese foundries. Although they can produce 12-inch GaN chips, they plan to observe market response before proceeding.

Mr. Lin Mao-Song, General Manager of Coherent Technologies, a leading laser source technology company, stated that the inspection and repair phase in Micro LED manufacturing might be longer than the actual manufacturing process. A 99.95% yield rate implies a high repair proportion, making it crucial to enhance production yield and reduce costs. Laser technology plays a significant role in increasing production speed and yield, with excimer laser being the best choice for repair and mass transfer, achieving yields of over 99.99%.

2023-08-14

Apple’s Impact on Micro LED’s Path and the Approaching Era of Game-Changing Applications

When Apple unveiled its inaugural wearable device, the Vision Pro, in June this year, CEO Tim Cook remarked, “Apple Vision Pro introduces us to spatial computing.”

The era of spatial computing entails redefining how users interact with digital content within the context of the real world. Apple’s ambition extends beyond mere immersive entertainment, aiming to seamlessly integrate personal computers and smartphones into everyday life and work scenarios, replicating the success it achieved in personal and mobile computing.

The launch of the Vision Pro has once again thrust new display technologies into the industry spotlight. Although the Vision Pro employs Micro OLED, the potential to achieve a portable, outdoor-capable mixed-reality headset rests on Micro LED, seen as the most promising option.

“Micro LED demonstrates balanced performance beyond average levels in terms of brightness, energy consumption, pixel density (Pixel per Inch, PPI), and optical module size,” noted Eric Chiou, Senior Research Vice President at TrendForce. He further emphasized Micro LED’s potential in the development of AR devices, stating, “This also explains why Meta, Google, and MIT are continuously evaluating and assisting in the development of Micro LED technology.”

The application potential of Micro LED in AR devices is evident from the number of companies investing in its development.

In the first half of 2023 alone, six companies—Raysolve, Porotech, Sitan, Kopin, GoerOptics, JBD—announced progress in the development of Micro LED micro-display products. Additionally, two AR glasses manufacturers, Rayneo Innovation and Nubia, unveiled products featuring Micro LED chips.

Certainly, Micro LED’s implementation is not confined to AR eyewear; it is making inroads into the realm of wearables, particularly in the form of smartwatches. Soon, consumers will find the first commercially available watch featuring a Micro LED screen on the market. Tag Heuer, a luxury watch brand, is leading the way with support from AU Optronics for Micro LED panels.

Anticipation mounts for an Apple Watch featuring a Micro LED screen, with rumors circulating consistently. According to earlier information from TrendForce, the release of the Micro LED version of the Apple Watch, originally projected for the second half of 2025, has been delayed to the first quarter of 2026. Initial reports suggested the supply of Micro LED chips would come from Epistar and Osram and that Apple would handle mass transfer at its Longtan facility. Recent reports, however, suggest that Apple might entrust mass transfer and subsequent work to its long-term collaborator, LG Display (LGD).

It’s rumored that LGD has visited Apple’s Longtan facility, indicating a potential handover of equipment to LGD, facilitating smooth mass transfer and back-end processes. Despite shifts in the supply chain, this alteration underscores Apple’s commitment to advancing the Micro LED version of the watch into mass production, with wearables continuing to play a pivotal role in the practical implementation of Micro LED.

The industry’s technological development and investment in wearables, particularly watches and AR glasses, demonstrate a shift towards small-sized sectors represented by headsets and wearables. This indicates that Micro LED is edging closer to large-scale commercialization and breakthrough applications.

Regarding the commercial development of Micro LED, the launch of large-sized products remains a critical indicator. Korean giants Samsung and LGD are pivotal players in this regard. Following Samsung’s introduction of the high-end 110-inch Micro LED TV, LGD’s plans to release a 136-inch Micro LED TV in 2024 have surfaced. Factoring in Samsung’s and LGD’s entries, a total of five companies, including AUO, BOE, and SmartKem, have announced developments in Micro LED display technology in 2023.

Considering the market trends mentioned above, based on TrendForce’s projections, the production value of Micro LED chips is expected to reach $27 million in 2023, showing a 92% annual growth. Looking ahead, driven by the expansion of current application shipments and the introduction of new use cases, the estimated chip production value is set to hit $580 million by 2027. This anticipates a compound annual growth rate of 136% from 2022 to 2027.

TrendForce is set to host the “Micro LED Forum 2023”on September 5th, from 9:30 to 17:00 at the NTUH International Convention Center. The forum has invited TrendForce’s Senior Research Vice President, Eric Chiou, alongside industry representatives from Mojo Vision, ITRI, Lumus, Unikorn Semiconductor, Porotech, Nitride Semiconductor, Tohoku University, Coherent, InZiv, AUO, and Tianma to share developments in Micro LED technology and its manifold applications.

(Photo credit: Samsung)

2023-08-04

[News] Taiwan’s AUO to Close Facilities, Launches Voluntary Retirement Plan

Taiwan’s leading panel manufacturer, AUO, is reportedly making a significant workforce reduction of around 200 employees. In response, AUO promptly issued a statement clarifying that these job cuts are part of a voluntary retirement initiative aligned with their flexible operational strategy. The company also announced the decision to shutter its C5D and C6C facilities located in the Tainan Science Park. These plants have been a primary hub for producing panels used in laptops, monitors, and televisions.

AUO emphasized that this strategic move is driven by a comprehensive evaluation of evolving market dynamics, terminal demand patterns, and the overarching supply-demand landscape. Embracing a flexible operational blueprint and a strong focus on emerging market technologies and high-value goods, AUO aims to ensure optimal efficiency and configuration across its manufacturing operations.

This decision comes after a five-month-long matchmaking program that was initiated following a capacity adjustment earlier this year. For employees who may be unwilling or unable to transition to other roles within the company, AUO is offering a voluntary retirement plan.

By concentrating their production planning and capacity allocation on other production lines, AUO seeks to enhance overall manufacturing capabilities and better adapt to market shifts. This strategic realignment highlights AUO’s commitment to navigating a swiftly evolving industry landscape while maintaining a competitive edge.

(Photo credit: AUO)

2023-05-05

Ennostar may take the lead on Micro LED chips from the delayed of Apple Watch launches?

Apple’s plan to release the first Apple Watch with a Micro LED display in 2024 has reportedly been delayed until the second half of 2025 or later due to production challenges. However, this delay shows Apple’s cautious approach to technology and evaluation. This delay shows Apple’s prudence and assessment of technology, but it also brings new opportunities for Ennostar, which was previously considered only a second supplier

According to market research firm DSCC’s, the new Apple Watch will initially adopt Osram’s Micro LED chips, and Epistar(under Ennostar), will be responsible for shipping related components. However, some insiders have revealed that Osram’s technology produces Vertical Chips, which are different from Epistar’s technology and are unlikely to be used in the same project simultaneously.

Epistar’s current chip technology is Flip Chips, Ennostar has stated that American brands are currently collaborating with European suppliers, and Epistar “may have a chance” to be the second supplier, however, ‘the second supplier” may not have a chance to join the cast until 2026.

DSCC mentioned that Epistar is responsible for shipping related components, which differs from what Ennostar said “second supplier”. Technically speaking, Ennostar is more likely to be a “parallel competitor” to Osram since the process of Vertical Chips versus Flip Chips are not on the same technical base. From this perspective, obviously, Apple has dual strategies on Micro LED from adopting Osram’s Vertical Chips as the core and maintaining the technical connections with Taiwanese manufacturers at the same time, which Ennostar may have a shot to ramp up to the main supplier again to take off the “second source” label.

Does the Micro LED process hint at Apple’s product line planning?

Micro LED chips now are mainly categorized into Vertical, Lateral, and Flip chips. According to industry insiders, Osram began developing Micro LED in 2019 but only focused on vertical chips due to patent issues. Currently, only 3 companies in the world have patents for Vertical Chips, and Osram is likely to gain a competitive advantage in Micro LED through these patents. As a result, the company is targeting the development of watches, phones, and AR glasses, and has been collaborating with Apple on watch projects in Germany since 2019. The size of the watch chip produced in collaboration with Apple is approximately 8um.

Meanwhile, Osram announced in 2021 that it is expanding its LED factory in Kulim, Malaysia with an investment of approximately $850 million, and plans to produce Mini LED and Micro LED chips in its 8-inch factory, with mass production expected in 2024. The company also mentioned last year that it plans to produce small-sized products by 2024, and this small-sized product is very likely to be Apple’s Apple Watch.

As for companies such as PlayNitride, Epistar, and Chinese manufacturers that are working on Micro LED technology, they are all using flip chips. PlayNitride stated that they have the opportunity to produce Lateral Chips as client’s request, and Vertical Chips may be produced for AR and VR in the future. “It still depends on the customer’s application to determine what kind of chips matches their products, e.g. Vertical Chips can bring higher PPI with a smaller size of chips.” PlayNitirde said.

Due to differences in the position of electrodes among Vertical chips, Lateral chips, and Flip Chips, give their own pros and cons in each production process. The advantage of Vertical Chips is that they can be made smaller, and the yield rate is higher as the size gets smaller. However, it is difficult to test and repair them once all the Micro LEDs are arranged and connected for testing, so the yield rate may decrease during the bonding process.

Vertical Chips are now suitable for use in the fields of watches, smartphones, and AR glasses, while Lateral Chips are used for other applications like automotive or large displays. However, AUO plans to produce Micro LED watches using Flip Chips, showing that different technologies can still be applied to similar products. In the future, using Vertical Chips may be necessary for developing AR glasses, which may explain why Apple is using this technology in its Apple Watch.

With the dawn of the era of Micro LED mass production, what will be Apple’s strategy?

Apple’s influence in display technology development affects other brands’ adoption attitudes. To reduce risks, Apple is not taking sides as different technologies and processes are involved, which may pose challenges to transfer technology or backplane technology, affecting the entire Micro LED supply chain. For the next generation Apple Watch, Apple is mainly working with Osram for Vertical MicroLED Chips, but may also collaborate with Taiwanese companies on Lateral or Flip Chips in the future.(Image credit: TechNews)

2023-04-13

AUO debuts First Commercial Micro LED Smartwatch, Marking Micro LED’s First Year of Mass Production

(Source: TechNews) AUO has been developing Micro LED technology since 2012 and has accumulated profound display expertise and processing capabilities, including resources from PlayNitride and Rohinni. Using its accurate mass-transfer technology, AUO transfers Micro LED chips onto AM-TFT backplanes. AUO also collaborates with Ruida Technology and BenQ Materials to develop Micro LED display driver ICs and packaging surface treatment materials, respectively and uses its image calibration technology to enhance picture quality performance in the display industry.

AUO launched a 1.39-inch commercial smartwatch this year, breaking through technological barriers. The smartwatch has a round design conforming to smartwatch standards, with a high pixel density of up to 326 PPI, maintaining color saturation and high contrast while improving the lifespan of large viewing angles and high-brightness displays. It is energy-efficient and meets the demand for clear information display under bright sunlight, leading the way in mass production.

Upgraded smart cockpit visual effects with Micro LED transparent display

AUO uses Micro LED transparent displays to redefine in-car usage, with high brightness and contrast, along with optical films on printed glass or special structures, to present different textures and integrate with the interior decor. The A-pillar to A-pillar LED immersive display screen achieves a display-on-demand cabin experience without interfering with information reading.

AUO has integrated a 17.3-inch Micro LED transparent display with a 12.3-inch LCD display to create a no-dead-angle naked eye 3D effect. It also includes a DMS recognition system to detect driving behavior and provide safety warnings. This technology can be used in future self-driving car dashboards to create a safer and more comfortable driving experience. Additionally, AUO displayed a 60-inch Micro LED transparent window screen that can be customized for different applications such as car windows, home entrances, smart storefronts, and commercial displays, providing a rich and fascinating visual experience.(Image credit: AUO)

  • Page 3
  • 5 page(s)
  • 24 result(s)

Get in touch with us