News
Recently, TSMC updated the progress of the expansion of its sub-2nm advanced process. On September 11, Hsu Mao-hsin, Director-General of Taiwan’s Central Taiwan Science Park Administration, announced the expansion of the Taichung Phase 2 park.
Currently, 95% of the land required for TSMC’s plant construction has been secured through agreed purchase prices. The full transaction is expected to be completed by the end of this year, with the land ready for TSMC by the first quarter of next year.
The Phase 2 park covers 89 hectares, of which the Hsingnong Golf Course occupies 67 hectares, representing about 76.8% of the total area and making it the largest landholder. The budget for land acquisition is approximately TWD 23.7 billion.
Currently, there are 111 landowners and structures in the park, with 70% of the owners agreeing to the acquisition, covering 95% of the total area.
In addition to supporting TSMC’s new plant, the rest of around 3 hectares are available for related industries to apply for residency. Several companies in semiconductor supply chain and precision machinery industry have already expressed interest in moving in, and the Central Taiwan Science Park Administration is encouraging IC design companies to join.
Presently, TSMC has concentrated most of its advanced process manufacturing facilities in Taiwan. Aside from three 2nm wafer fabs in its Kaohsiung Nanzi Park, there is also space available to accommodate sub-2nm technology fabs. Industry insiders revealed that Kaohsiung is already preparing for the deployment of the A14 (14 angstrom) process. The first 2nm fab in Nanzi is expected to start mass production in 2025.
Although 2nm product is still absent from the market, their output value is expected to surpass that of 3nm. Insiders indicated that future applications will include HPC (high-performance computing) and smartphone technology sectors.
Read more
(Photo credit: TSMC)
News
Advancements continue in China’s semiconductor landscape with progress reported in five major semiconductor projects. Companies like BYD Semiconductor, Empyrean Technology, CGEE, Sinopack, and CETC (Shanxi) have witnessed recent developments across semiconductor materials, design, packaging and testing, and power semiconductors.
BYD Semiconductor: completed the first phase of power devices and sensor controller project
BYD Semiconductor has successfully completed the first phase of its Power Devices and Sensor Controller project, focusing on automotive-grade semiconductors. This project aims to establish a production line capable of producing 720,000 power device products and CNY 6 billion (about USD 847 million) sets of optical microelectronics products annually, contributing to an expected annual output value of CNY 15 billion (about USD 2.1 billion). The devices produced are critical components for new energy vehicles.
Empyrean Technology: 7 semiconductor-related projects signed to build in Xi’an
Empyrean Technology is an EDA and services provider, focusing on analog design and digital SoC solution.
Empyrean Technology’s Xi’an R&D base, along with six other projects, has been signed in Xi’an High-tech Zone. Empyrean Technology envisions its Xi’an R&D base as the largest center in northwest China. According to CCTV, these projects included fields such as integrated circuits and network security, providing essential technical support to address challenges arising from the U.S. bans.
CGEE: completed headquarters production and R&D center project
CGEE specialize in semiconductor-grade single crystal silicon furnaces (8-12 inches), 6-8 inch SiC, GaN, and associated crystal growth equipment and processes.
On November 28, CGEE highlighted the completion of the opening ceremony for its headquarters production and R&D center project. Focused on expanding production capacity, the company clarified that this project is an extension of its core business. It involves technical research, development, and upgrades in crystal growth equipment and processes, hastening the industrialization of research outcomes. This strategic move aims to assist the company in diversifying its product line to better align with customer demands.
In a recent interview, CGEE highlighted its proactive approach to enter the Taiwan market, engaging in close technical exchanges with customers. The company has not only secured bulk orders but also witnessed a continuous increase in order quantities. Furthermore, there is an active strategic deployment in overseas markets. CGEE emphasized the successful delivery and acceptance of its semiconductor-grade single crystal silicon furnaces and SiC single crystal furnaces in Taiwan.
Sinopack’s subsidiary Bowei: completed third-generation semiconductor power device industrialization project
Bowei focus on GaN communication base station RF device. The project’s annual capacity is planned to reach 6 million units.
On November 27, Sinopack announced that its subsidiary, Bowei, has successfully completed the expansion project for the third-generation semiconductor power device industrialization. The key products of this project include GaN communication base station RF chips and devices, with an annual production capacity planned at 6 million units.
Sinopack highlighted that Bowei primarily engages in integrated circuits design, packaging, testing, and sale of GaN communication RF integrated circuits products. This includes including GaN communication base station RF integrated circuits and devices, along with microwave communication RF integrated circuits and devices.
CETC (Shanxi): Completed Its third-generation semiconductor technology innovation center project
CETC(Shanxi) engage in the research, development, and industrialization of high-purity graphite and carbon-based material equipment.
The third-generation semiconductor technology innovation center of CETC (Shanxi) is situated in the Shanxi Transformation and Comprehensive Reform Demonstration Zone (Shanxi ZGQ). This center includes the trial verification line and supporting projects, along with the microelectronics smart manufacturing industry base project. The construction is planned in two phases. Upon completion of the first phase, it will possess the capacity to produce 600 units/sets of smart manufacturing equipment annually, along with 24,000 pieces/year of ceramic substrates and modular circuits. The facility will also establish a 6-inch wide bandgap semiconductor manufacturing equipment process verification platform and a common technology research and development platform.
(Image: BYD Semiconductor)