FOPLP


2024-10-03

[News] Packaging and Equipment Firms Accelerate FOPLP Deployment: Spotlight on 7 Taiwanese Companies

The surging global demand for AI chips is straining advanced packaging capacity, driving a sharp focus on fan-out panel-level packaging (FOPLP) within Taiwan’s semiconductor industry. According to a report by Commercial Times, major packaging and testing firms such as ASE and Powertech, alongside equipment manufacturers like Gudeng, GPTC, E&R Engineering, Mirle, and analysis firm MAtek, are investing heavily in FOPLP technology.

The rapid development and expanding applications of AI chips have intensified the need for higher chip performance, smaller sizes, better heat dissipation, and lower costs. As emerging applications such as 5G, AIoT, and automotive chips continue to grow, the demand for high-performance, high-power semiconductors has surged. FOPLP technology, which enhances performance while significantly cutting costs and addressing thermal and signal integration issues, is emerging as a key trend in the market.

ASE has been working on panel-level packaging for several years. The company expects its panel-level packaging equipment to be in place by the second quarter of 2025, maintaining a technological edge. On October 2, ASE announced a nearly NT$8 billion purchase of equipment by its subsidiary, SPIL, from companies including Advantest.

Powertech has already moved into wafer-level fan-out packaging and is now shifting toward panel-level fan-out packaging. The company claims that the new technology can increase chip area output by two to three times. It has dedicated its Hsinchu plant to panel-level fan-out packaging and TSV CIS, positioning itself for future growth opportunities.

Equipment manufacturers are also seeking to capitalize on this trend. GPTC, a supplier to major foundries for InFO packaging, is expected to benefit from future FOPLP opportunities due to the similar nature of its equipment. Gudeng Precision is developing panel-level packaging transport boxes, with mass production expected in 2025.

FOPLP combined with TGV drilling is seen as the key to this technology. Analysts cited by Commercial Times highlight that FOPLP+TGV enables higher area utilization and unit capacity, which effectively reduces heterogeneous packaging costs.

E&R Engineering is focusing on drilling, testing, and cutting equipment for glass substrates, primarily supplying panel manufacturers in Taiwan and outsourced assembly and testing providers in Southeast Asia. Mirle has targeted glass substrate transport equipment, while MAtek is leading the market in glass substrate inspection technology.

(Photo credit: ASE)

Please note that this article cites information from Commercial Times.

2024-09-12

[News] ACM Research Launches Panel-Level Etching Tool, Expanding Its FOPLP Porfolio

ACM Research, Inc., a provider of wafer processing solutions for semiconductor and advanced wafer-level packaging applications in China, announced on September 3rd the release of its Ultra C bev-p panel bevel etching tool for fan-out panel-level packaging (FOPLP) applications.

This new tool is designed for bevel etching and cleaning in copper-related processes, offering dual-side bevel etching for both the front and back of panels within a single system, further boosting process efficiency and enhances product reliability.

Moreover, a day after the announcement, the company further revealed that it had received purchase orders for four wafer-level packaging tools, including two from a U.S.-based customer and two from a U.S.-based research and development (R&D) center.

Dr. David Wang, ACM’s president and chief executive officer, believes that FOPLP will grow in importance as it addresses the evolving needs of modern electronic applications, offering benefits in integration density, cost efficiency, and design flexibility.

Reportedly, the new Ultra C bev-p tool is designed to deliver advanced performance, utilizing ACM’s expertise in wet processing. It is one of the first tools to incorporate double-sided bevel etching for horizontal panel applications.

Together with the Ultra ECP ap-p for electrochemical plating and the Ultra C vac-p flux cleaning tools, the Ultra C bev-p is expected to support the FOPLP market by enabling advanced packaging on large panels with high-precision features.

ACM emphasizes that the Ultra C bev-p tool is a critical enabler for FOPLP processes, employing a wet etching technique tailored for bevel etching and copper residue removal.

This process plays a vital role in preventing electrical shorts, reducing contamination risks, and preserving the integrity of subsequent processing steps, ensuring long-term device reliability. The tool’s effectiveness is driven by ACM’s patented technology, designed to tackle the specific challenges of square panel substrates.

Different from traditional round wafers, ACM’s design is said to ensure precise bevel removal process that stays confined to the bevel region, even on warped panels. This is essential for maintaining the integrity of the etching process while ensuring the high performance and reliability needed for advanced semiconductor technologies.

Currently, major players in the FOPLP advanced packaging field include Powertech Technology, ASE Group, SPIL, TSMC, Innolux, JSnepes, and Samsung Electro-Mechanics.

TrendForce points out that FOPLP technology presents advantages and disadvantages. Its main strengths are lower unit cost and larger package size, but as its technology and equipment systems are still developing, the commercialization process is highly uncertain.

It is estimated that the mass production timeline for FOPLP in consumer IC and AI GPU may fall between the second half of 2024 to 2026, and 2027-2028, respectively.

Read more

(Photo credit: ACMR)

Please note that this article cites information from ACM Research.

2024-08-13

[News] ACM Research Steps into FOPLP Advanced Packaging Field

Amid the advancement of emerging applications such as Artificial Intelligence (AI), High-Performance Computing (HPC), data center, and autonomous vehicle, fan-out panel-level packaging (FOPLP) technology has successfully garnered industry attention due to its advantages in significantly improving computing power, reducing latency, and increasing bandwidth. As a result, more manufacturers are entering this field.

Recently, semiconductor equipment manufacturer ACM Research Shanghai introduced the Ultra ECP ap-p panel-level electroplating equipment for FOPLP.

Prior to this, ACM has launched the Ultra C vac-p negative pressure cleaning equipment designed for fan-out panel-level packaging applications, signaling that ACM has successfully entered the high-growth FOPLP market.

It is worth mentioning that since the second quarter of this year, chip manufacturers like AMD have actively approached TSMC and professional OSAT (Outsourced Semiconductor Assembly and Test) companies to promote chip packaging using FOPLP technology, further increasing industry focus on FOPLP.

In fact, advanced packaging has an increasing demand for low-latency, high-bandwidth, and cost-effective semiconductor chips, and FOPLP offers high bandwidth and high-density chip interconnects, making it a technology with higher potential.

FOPLP is a process performed on larger square substrates, allowing multiple chips, passive components, and interconnects to be integrated into a single package on a panel, offering greater flexibility, scalability, and cost effectiveness.

By redistributing chips on larger rectangular panels, FOPLP largely reduces the costs of packaging large GPU and high-density, high-bandwidth memory (HBM).

It is reported that the utilization rate of traditional silicon wafers is less than 85%, while that of panels exceeds 95%. The effective area of a 600×600 mm panel is 5.7 times that of a 300 mm traditional silicon wafer, with overall panel cost expected to decrease by 66%.

The increase in area utilization leads to higher capacity, greater flexibility in AI chip design, and significant cost reduction.

Currently, major players in the FOPLP advanced packaging field include Powertech Technology, ASE Group, SPIL, TSMC, Innolux, JSnepes, and Samsung Electro-Mechanics.

TrendForce points out that FOPLP technology presents advantages and disadvantages, facing both opportunities and challenges. Its main strengths are lower unit cost and larger package size, but as its technology and equipment systems are still developing, the commercialization process is highly uncertain.

It is estimated that the mass production timeline for FOPLP in consumer IC and AI GPU may fall between the second half of 2024 to 2026, and 2027-2028, respectively.

Read more

(Photo credit: ACMR)

Please note that this article cites information from WeChat account DRAMeXchange.

2024-08-06

[News] Innolux Targets to Begin FOPLP Mass Production by Year-End

According to a report from Economic Daily News, Innolux President James Yang announced on August 5 that the company is advancing its semiconductor fan-out panel-level packaging (FOPLP) with three key processes, targeting to enter mass production as soon as year-end.

The chip-first process technology, set to be the first to reach mass production by the end of this year, is expected to significantly contribute to revenue by the first quarter of next year.

Additionally, the RDL-first process, which target mid-to-high-end products, is anticipated to enter mass production within one to two years. The most technically challenging Through-Glass Via (TGV) process, being developed in collaboration with partners, will require another two to three years before it can be mass-produced.

At yesterday’s earnings call, there was significant interest in whether Innolux’s 4th Plant in Tainan (5.5-generation LCD panel plant) would be sold to Micron or TSMC.

Innolux Chairman Jim Hung stated that, in addition to quantifying the value of the sale, it is also important to consider the qualitative aspect, such as the potential new business opportunities that the deal could bring for both parties.

He further pointed out that while 5.5-generation plants are not the most competitive in the panel industry, they could still be valuable to other manufacturers. The sale of this asset is expected to contribute to Innolux’s non-operating income.

Regarding the recent focus on FOPLP (Fan-Out Panel-Level Packaging) mass production progress, Jim Hung emphasized that Innolux’s technology is already prepared.

James Yang explained that Innolux’s panel-level fan-out packaging technology will initially be applied to mid-to-low-end products, with plans to later expand into mid-to-high-end products.

He added that by entering the FOPLP field, Innolux aims for this technology to become a part of the AI PC industry, viewing the asset disposal as an opportunity to develop new business models and collaborations.

Previously reported by Economic Daily News, Innolux has been promoting the transformation of its fully depreciated old plants. The 3.5-generation line at the Tainan facility has been repurposed for advanced packaging with FOPLP, and the 4-generation line has been converted to produce X-ray sensors (through Raystar Optronics), both of which are related to semiconductor products.

Read more

(Photo credit: Innolux)

Please note that this article cites information from Innolux and Economic Daily News.

2024-08-05

[News] Breaking Apple’s Monopoly – TSMC’s InFO Packaging Reportedly Adds Google Chips

TSMC’s fan-out (InFO) packaging process will no longer be exclusively used by Apple. According to a report from Commercial Times, it’s revealed that Google’s self-developed Tensor chips for their phones will switch to TSMC’s 3nm process next year and will also start using InFO packaging.

TSMC developed InFO packaging based on FOWLP (fan-out wafer-level packaging), which gained prominence after being adopted by the A10 processor in the iPhone 7 in 2016.

TSMC indicated that the current InFO_PoP technology has advanced to its ninth generation. Last year, it successfully certified 3nm chips, achieving higher efficiency and lower power consumption for mobile devices. The InFO_PoP technology, which features a backside redistribution layer (RDL), has entered mass production this year.

According to industry sources cited by the Commercial Times, Google will shift to TSMC for the Tensor G5 chips, which will be used in the Pixel 10 series next year. These chips will not only utilize the 3nm process but will also adopt integrated fan-out packaging.

This year’s Tensor G4 chips, set to be announced soon, use Samsung’s FOPLP (fan-out panel-level packaging). Although wafer-level packaging (WLP) is generally considered to have advantages over panel-level packaging (PLP), FOWLP still prevails at this stage due to yield and cost considerations.

TSMC has also begun developing FOPLP technology. Previously, per sources cited by a report from MoneyDJ, TSMC has officially formed a team, currently in the “Pathfinding” phase, and is planning to establish a mini line with a clear goal of advancing beyond traditional methods.

Although it is not expected to mature within the next three years, major customers like NVIDIA have partnered with foundry companies to develop new materials. One of TSMC’s major clients has already provided specifications for using glass materials.

Traditionally, chip advancements have been achieved through more advanced process nodes. However, new materials could enable the integration of more transistors on a single chip, achieving the same goal of scaling.

For instance, Intel plans to use glass substrates by 2030, potentially allowing a single chip to house one trillion transistors – 50 times the number in Apple’s A17 Pro processor. This suggests that glass substrates could become a significant milestone in chip development.

Another sources cited by Commercial Times have also indicated that glass substrates are part of the medium- to long-term technological roadmap. They can address challenges in large-size, high-density interconnect substrate development.

Currently, this technology is in the early stages of research and development. Its impact on ABF (Ajinomoto Build-up Film) substrates is expected to become significant in the second half of 2027 or later.

Read more

(Photo credit: TSMC)

Please note that this article cites information from Commercial Times and MoneyDJ.

  • Page 1
  • 3 page(s)
  • 13 result(s)

Get in touch with us