News
Following recent sanctions imposed by the United States, Chinese GPU startup Moore Threads has initiated workforce adjustments. The company announced that these changes will be completed within the week, emphasizing that it’s a necessary step for their ongoing growth. Despite the challenges, Moore Threads is confident that the Chinese GPU industry is not facing its darkest days.
According to Jiemian News, Moore Threads’ CEO, Jianzhong Zhang, expressed that the personnel adjustments are a pragmatic choice to ensure the company’s continued development. He acknowledged the difficulty of this decision but hopes for understanding from the team.
Zhang also underlined that, in this period of both challenges and opportunities, he firmly believes that the Chinese GPU industry is not in its “darkest hours” but rather has a world of possibilities.
The company plans to restructure its organization, establishing two strategic groups, the AI Strategy Group (AISG) and the Metaverse Computing Strategy Group (MCSG), to integrate resources and drive product technology implementations. In terms of workforce performance, the company will conduct routine job position realignments to achieve more efficient personnel matching and compensation structures, with a particular focus on core GPU research and development. These adjustments are expected to be finalized within the week.
(Image: Moore Threads)
News
At this year’s Qualcomm Snapdragon Summit, the company announced its latest PC processor, the Snapdragon X Elite. With impressive performance metrics, this development is poised to shake up the PC processor market as Arm architecture gains ground, posing a substantial challenge to the established x86 architecture.
At this year’s Qualcomm Snapdragon Summit, the company announced its latest PC processor, the Snapdragon X Elite. The launch of laptops featuring the Qualcomm Snapdragon X Elite is expected in mid-2024, marking an opportune moment for a “counteroffensive.”
TrendForce indicates that Arm architecture PC processors have secured around an 11% market share this year, primarily propped up by Apple’s laptop processors. Industry insiders reveal that, in light of the growth potential in the PC processor market, semiconductor giants are increasingly adopting ARM architecture to venture into the market.
2024 Sees Laptop Upgrade Surge, Desktop Market Shrinks
Statistics reveal that the surge in remote work during 2020 prompted a shift in consumer preferences from desktop computers to laptops. Moreover, the ongoing establishment of cloud platforms by businesses in 2021 and 2022 has generated positive momentum, signaling a shrinking desktop market and an expanding PC market.
AI-powered PCs and Windows 12 next year are expected to ride a fresh wave of upgrades in 2024. Therefore, when PCs featuring ARM architecture become widespread, Intel and AMD may not be predominantly affected in the laptop processor business based on the x86 architecture. Instead, the desktop processor segment could face the most significant impact.
Kedar Kondap, Qualcomm’s Senior Vice President and General Manager of the Compute and Games Division, foresees an upgrade wave fueled by AI PCs next year, with further growth anticipated in 2025. It is expected that consumers will lean towards AI PCs for their next computer purchases.
The initial wave of products equipped with Qualcomm’s AI PC processors has been unveiled, aligning with the upcoming wave of device upgrades in next year. While Intel is set to launch its first AI acceleration engine, the Intel Core Ultra, featuring integrated NPU in December, its Microsoft Windows 12 certification remains a point of observation.
In a broader perspective, Intel and AMD are positioned to follow up with the AI PC trend by 2025. This coincides with the ending service of Windows 10 and the gradual implementation of Wifi 7 and 6G technologies. By 2028, they are expected to play a pivotal role in driving AI PC growth.
On another note, a South Korean analyst anticipates that the growth momentum in AI PCs hinges on when Apple incorporates AI features into Mac computers.
ARM vs. x86, Microsoft’s Crucial Role
This is because Microsoft is set to launch Windows 12 next year, featuring the built-in Copilot AI assistant. It will collaborate with operating systems and software such as Windows, Edge, Microsoft 365, Outlook, and the Bing search engine, ushering in an entirely new AI-driven user experience.
Several tech giants are fiercely competing in the AI PC market, with NVIDIA and AMD investing in the development of Arm architecture processors. It’s worth mentioning that in 2016, Microsoft agreed to let Qualcomm exclusively develop Windows-compatible chips, and this agreement is set to expire in 2024. Consequently, Qualcomm may gain a strategic advantage. In contrast, the collaboration between NVIDIA and MediaTek on Arm processors might only begin to bear fruit in 2025.
As for AMD’s foray into Arm architecture research and development, whether this indicates a less optimistic outlook for the x86 market is a matter for ongoing observation. Intel CEO Pat Gelsinger expressed that he isn’t concerned about Arm architecture processors vying in the PC market. From a different perspective, Intel may even consider assisting with manufacturing.
(Image: Qualcomm)
Insights
Looking at the impact of AI server development on the PCB industry, mainstream AI servers, compared to general servers, incorporate 4 to 8 GPUs. Due to the need for high-frequency and high-speed data transmission, the number of PCB layers increases, and there’s an upgrade in the adoption of CCL grade as well. This surge in GPU integration drives the AI server PCB output value to surpass that of general servers by several times. However, this advancement also brings about higher technological barriers, presenting an opportunity for high-tech PCB manufacturers to benefit.
TrendForce’s perspective:
Taking the NVIDIA DGX A100 as an example, its PCB can be divided into CPU boards, GPU boards, and accessory boards. The overall value of the PCB is about 5 to 6 times higher than that of a general server, with approximately 94% of the incremental value attributed to the GPU boards. This is mainly due to the fact that general servers typically do not include GPUs, while the NVIDIA DGX A100 is equipped with 8 GPUs.
Further analysis reveals that CPU boards, which consist of CPU boards, CPU mainboards, and functional accessory boards, make up about 20% of the overall AI server PCB value. On the other hand, GPU boards, including GPU boards, NV Switch, OAM (OCP Accelerator Module), and UBB (Unit Baseboard), account for around 79% of the total AI server PCB value. Accessory boards, composed of components such as power supplies, HDD, and cooling systems, contribute to only about 1% of the overall AI server PCB value.
Since AI servers require multiple card interconnections with more extensive and denser wiring compared to general servers, and AI GPUs have more pins and an increased number of memory chips, GPU board assemblies may reach 20 layers or more. With the increase in the number of layers, the yield rate decreases.
Additionally, due to the demand for high-frequency and high-speed transmission, CCL materials have evolved from Low Loss grade to Ultra Low Loss grade. As the technological barriers rise, the number of manufacturers capable of entering the AI server supply chain also decreases.
Currently, the suppliers for CPU boards in AI servers include Ibiden, AT&S, Shinko, and Unimicron, while the mainboard PCB suppliers consist of GCE and Tripod. For GPU boards, Ibiden serves as the supplier, and for OAM PCBs, Unimicron and Zhending are the suppliers, with GCE, ACCL, and Tripod currently undergoing certification. The CCL suppliers include EMC. For UBB PCBs, the suppliers are GCE, WUS, and ACCL, with TUC and Panasonic being the CCL suppliers.
Regarding ABF boards, Taiwanese manufacturers have not yet obtained orders for NVIDIA AI GPUs. The main reason for this is the limited production volume of NVIDIA AI GPUs, with an estimated output of only about 1.5 million units in 2023. Additionally, Ibiden’s yield rate for ABF boards with 16 layers or more is approximately 10% to 20% higher than that of Taiwanese manufacturers. However, with TSMC’s continuous expansion of CoWoS capacity, it is expected that the production volume of NVIDIA AI GPUs will reach over 2.7 million units in 2024, and Taiwanese ABF board manufacturers are likely to gain a low single-digit percentage market share.
(Photo credit: Google)
In-Depth Analyses
Recently, there has been news of collaboration between NVIDIA and MediaTek. Speculation suggests that the future collaboration may extend to smartphone SoCs, allowing MediaTek to enhance the graphical computing and AI performance of Dimensity smartphone SoCs through NVIDIA’s GPU technology licensing.
Currently, the focus of this collaboration is primarily on NB SoC development, with some progress in the automotive-related chip sector. As for the scope of smartphone SoC collaboration, it is still under discussion, but the potential for related partnerships is worth noting.
In the announced collaboration between NVIDIA and MediaTek for the NB SoC products, MediaTek is mainly responsible for CPU, while other part such as GPU, DSP, ISP, and interface IP are provided by NVIDIA or external partners. NVIDIA holds the leadership position, while MediaTek plays a supporting role in this collaboration.
Regarding the industry’s speculation about possible collaboration in smartphone SoC development, it is estimated that MediaTek will take the lead in the design. Therefore, it is necessary to explore the motivations behind MediaTek’s adoption of related technologies.
Firstly, since the era of the Arm V9 instruction set, Arm’s reference GPU, Immortalis, has incorporated ray tracing functionality, assisting MediaTek’s flagship SoCs in improving gaming performance. This indicates that optimizing gaming scenarios is a key development focus for SoC manufacturers.
However, for high-end gaming applications, the current GPU performance of smartphone SoCs still cannot maintain high frame rates and native resolutions during gameplay. While selecting a pure core stacking approach to improve computational power is effective, it puts pressure on device power consumption. In light of this, Qualcomm introduced Snapdragon Game Super Resolution (GSR) technology this year, which simultaneously reduces power consumption and enhances game graphics quality. MediaTek has not yet explored this technology, and Arm Immortalis has not been released. Therefore, when it comes to GPU performance computing, MediaTek has incentives to seek external collaborations.
Furthermore, with the rapid upgrading of GPUs on smartphone SoCs, PC-level games are now being introduced to smartphones, and industry players are promoting compatibility with graphics APIs, opening doors for NVIDIA, AMD, and even Intel to enter the mobile gaming market. Samsung has partnered with AMD for its Exynos SoC GPU, while NVIDIA, with similar technology to Qualcomm Snapdragon GSR, becomes a logical choice as a cooperation partner for MediaTek.
TrendForce believes that if MediaTek integrates NVIDIA GPUs into Dimensity SoCs and leverages TSMC’s process power efficiency advantages, it could bring a new wave of excitement to MediaTek in the flagship or gaming device market, attracting consumer interest. However, despite the potential technical benefits of collaboration, considering the influence of geopolitical factors, MediaTek, which primarily sells its smartphone SoCs to Chinese customers, may ultimately abandon this collaboration option due to related policy risks.