Intel


2024-07-23

[News] Chip Supply in Shortage, SEMI Calls for Standardization in Back-end Processes

As TSMC and other major chip manufacturers compete for AI business opportunities, chip production capacity is unable to keep up with demand. Industry sources cited in a report from NIKKEI claimed that the slow expansion of high-end chip production capacity is due to different packaging and testing technologies used by various companies and calls for the industry to standardize as soon as possible.

Jim Hamajima, President of the Japan office of the Semiconductor Equipment and Materials International (SEMI), recently stated in an interview with NIKKEI that leading chip manufacturers like Intel and TSMC should adopt international standards for back-end processes to effectively and quickly increase production capacity.

Hamajima further noted that each company is trying to apply unique solutions in back-end processes, with TSMC and Intel using different technical standards, which leads to inefficiencies.

Semiconductor manufacturing is divided into two major parts: front-end and back-end processes. While the photolithography technology used in front-end processes widely adopts international standards set by SEMI, packaging and testing in back-end processes vary among manufacturers. For example, TSMC uses CoWoS technology for advanced packaging, while Samsung Electronics uses I-Cube technology.

In recent years, chip manufacturers have actively invested in the development of advanced packaging technologies, primarily because front-end processes face technical bottlenecks, making back-end processes the key to gaining a competitive edge.

Hamajima believes that the current state of back-end processes in the semiconductor industry is “Balkanized,” with each company adhering to its own technologies, leading to a fragmented industry. He warns that this issue will start to impact profit margins as more powerful chips are produced in the future.

Hamajima stated that if semiconductor manufacturers adopt standardized automated production technologies and material specifications, it will be easier to acquire manufacturing equipment and upstream material supplies when expanding production capacity.

Hamajima is a director of a recently launched consortium led by Intel and 14 Japanese companies to jointly develop automated systems for back-end processes. The collaborating companies include Japanese companies such as Omron, Yamaha Motor, Resonac, and Shin-Etsu Polymer, a subsidiary of Shin-Etsu Chemical Industry.

Hamajima noted that Japan, with its numerous automation equipment and semiconductor material suppliers, is an ideal location to test international standards for back-end processes.

He also acknowledged that currently, Intel is the only multinational chip manufacturer in the alliance, which might lead to the development of technical standards that favor Intel. However, he emphasized that the alliance welcomes other chip manufacturers to join, and the research outcomes will serve as a reference for future industry standard-setting.

Read more

(Photo credit: TSMC)

Please note that this article cites information from NIKKEI.

2024-07-23

[News] Intel Suspended Investment in French and Italian Chip Plants

Recently, after reporting a loss of USD 7 billion in its manufacturing business for 2023, Intel stated that its investment in France and Italy could not be realized for the time being, which is worth several billion euros and can potentially create thousands of jobs. Relevant investment plans for chip plants mentioned above may have been suspended.

Intel noted in a statement, “Investment in France has been paused,” citing “significant changes in economic and market conditions” since 2022.

The company had selected a location southwest of Paris as a new R&D center for artificial intelligence (AI) and high-performance computing (HPC). The center is planned to open by the end of 2024 and will employ 450 people.

Intel added that the “scope” of the project is undergoing adjustment, and France remains a choice for Intel’s future R&D center.

Two years ago, Intel began negotiations with Italy on plans to invest up to EUR 4.5 billion to build a manufacturing plant in the country. This plant would create 1,500 jobs for Intel and 3,500 jobs for suppliers.

When it comes to the status of the Italian plant, Intel said it currently focused on its active manufacturing projects in Ireland, Germany, and Poland. However, Italy’s Minister of Business, Adolfo Urso, stated in March of this year that Intel had delayed its investment in Italy.

Read more

(Photo credit: Intel)

Please note that this article cites information from WeChat account DRAMeXchange.

2024-07-12

[News] TSMC and Intel Boost Their 2025 Capital Spending to Lead in the AI Era

The semiconductor industry, driven by AI, is entering a new upward cycle. According to a forecast report from SEMI, after the trough in 2023, the total sales of equipment in 2024 will hit a new high, with growth momentum continuing into 2025. Among this trend, per a report from Commercial Times, major companies including TSMC, Intel, Samsung, SK hynix, and Micron are all actively preparing, with plans to continue increasing capital expenditure next year in preparation for the AI era.

TSMC and Intel are the most proactive foundries. Intel plans to increase its capital expenditure by 2% in 2024, reaching USD 26.2 billion; TSMC’s capital expenditure for this year is expected to be between USD 28 billion and USD 32 billion.

The same report further cited sources, indicating that TSMC’s capital expenditure this year will reach the upper end of the estimated range. Next year, the upper limit is expected to increase by another USD 5 billion to USD 37 billion, potentially reaching the second-highest level in its history.

It’s reported that customer demand for TSMC’s 2nm process capacity has exceeded expectations. In addition to Apple securing the first batch of TSMC’s 2nm capacity, non-Apple customers are also actively planning for advanced processes. TSMC continues to advance its goal of mass production of the 2nm process by next year.

Another source cited by Commercial Times reveals that TSMC accelerated equipment orders in the second quarter and further increased momentum in the third quarter, primarily to ensure the smooth launch of the 2nm process by mid-next year.

In the HBM sector, Samsung and SK hynix are reportedly raising funds to prepare for significant production expansion in 2025.  A report from Korean media outlet Korea Economic Daily (KED) indicated that Samsung Electronics and SK hynix are considering applying for loans from the Korea Development Bank, with planned loan amounts of KRW 5 trillion (roughly USD 3.6 billion) and KRW 3 trillion (roughly USD 2.2 billion), respectively.

Micron’s capital expenditure plan for the 2024 fiscal year is about USD 8 billion. In the fourth quarter of the 2024 fiscal year, Micron will spend approximately USD 3 billion on fab construction and new wafer fab equipment (WFE). For the 2025 fiscal year, Micron plans to significantly increase its capital expenditure, targeting 30% of its revenue, or about USD 12 billion. Earlier, Micron’s Chief Operating Officer, Manish Bhatia, stated that the scale of the HBM business is expected to expand to several billion dollars in the 2025 fiscal year.

Read more

(Photo credit: Micron)

Please note that this article cites information from SEMI and Commercial Times.
2024-07-10

[News] Glass Substrate Mass Production is Nearing, with Tech Giants Leading the Way

Recently, Intel, AMD, Samsung, LG Innotek, and SKC’s US subsidiary Absolics have all highly focused on glass substrate technology for advanced packaging. Due to its excellent performance, glass substrate technology has become a rising star in the field of advanced packaging.

In September 2023, Intel announced the so-called “next-generation advanced packaging glass substrate technology,” claiming it could revolutionize the entire chip packaging field. Glass substrate refers to the replacement of organic materials in organic packaging with glass, rather than replacing the entire substrate. Therefore, Intel will not mount chips on pure glass; instead, the core material of the substrate will be made of glass.

Intel stated that glass substrates could lay the foundation for achieving an astounding one trillion transistors on a single package within the next decade. Based on its promising prospect, rumors surface recently that Intel plans to mass-produce glass substrates as early as 2026. Intel has invested approximately a decade in glass substrate technology and currently has a fully integrated glass research line in Arizona, USA. The company stated that the production line costs over USD 1 billion and requires collaboration with equipment and material partners to establish a complete ecosystem. Currently, only a few companies in the industry can afford such an investment, and Intel seems to be the only company so far to successfully develop glass substrate.

Apart from Intel, SKC’s US subsidiary Absolics, AMD, and Samsung also see the broad development prospect of glass substrate.

In 2022, SKC’s US subsidiary Absolics invested around KRW 300 billion to establish the first factory dedicated to producing glass substrate in Covington, Georgia, USA. Recently, the company announced that the factory has been completed and has begun mass production of prototype products. Industry analysts believe this marks a critical moment for the global glass substrate market.

Samsung has formed an alliance composed of Samsung Electro-Mechanics, Samsung Electronics, and Samsung Display to develop glass substrate, aiming to start large-scale mass production in 2026 and commercialize the technology faster than Intel. It’s reported that Samsung Electro-Mechanics plans to install all necessary equipment on a pilot production line by September this year and commence operations in the fourth quarter.

AMD plans to launch glass substrate between 2025 and 2026 and to collaborate with global component companies to maintain its leading position. According to Korean media reports, AMD is conducting performance evaluation tests on glass substrate samples from several major global semiconductor substrate companies, intending to introduce this advanced substrate technology into semiconductor manufacturing.

Currently, with the emergence of new companies like SCHMID and the participation of laser equipment suppliers, display manufacturers, and chemical suppliers, the industry is gradually forming some new supply chains around glass core substrate, and create a diversified ecosystem.

Read more

(Photo credit: Intel)

Please note that this article cites information from WeChat account DRAMeXchange.
2024-07-10

[News] TSMC Reportedly Plans to Commence Trial Production for Apple’s 2nm Chips Next Week

After Samsung announced a major breakthrough in 2nm, securing the first batch of orders from Japanese AI company Preferred Networks, its rival TSMC is also advancing. According to reports from Wccftech and ET News, TSMC is set to begin trial production of 2nm chips next week, which would reportedly be used in the upcoming iPhone 17 lineup in 2025.

The reports note that the trial production will be conducted in TSMC’s Baoshan Plant in Hsinchu, northern Taiwan, as facilities have been brought in during the second quarter. The iPhone 17 lineup is rumored to be the first to feature TSMC’s 2nm chips. Following that, the chips will likely be used in the 14-inch and 16-inch MacBook Pro models.

According to a previous report by MoneyDJ, TSMC’s 2nm production bases are located in Hsinchu Science Park and Kaohsiung, southern Taiwan, while the mass production is expected to kick off in Hsinchu first, with an initial monthly capacity of approximately 30,000 to 35,000 wafers.

Apple and TSMC share a long history of partnership, as the smartphone giant’s A17 Pro, M3 and M4 chips are all manufactured with TSMC’s 3nm node. As TSMC reportedly plans to enter 2nm trial production next week for Apple’s M5 chip, the company’s target for 2nm to enter mass production in 2025 would be on schedule, Wccftech notes.

According to Wccftech, The M5 chip, compared to its predecessor M4, is expected to have performance increase of 10 to 15 percent and a power consumption reduction of up to 30 percent compared to current 3nm-based chips.

Regarding the progress of other semiconductor heavyweights on 2nm, Samsung is said to commence mass production of 2nm chips for mobile devices by 2025. The initial SF2 2nm process will be ready next year, followed by an enhanced version, SF2P, in 2026. Its latest 2nm process, SF2Z, has incorporated optimized backside power delivery network (BSPDN) technology, and will enter mass production in 2027.

On the other hand, Intel’s 20A manufacturing technology (2nm) is reportedly scheduled for launch in 2024, introducing two technologies: RibbonFET surround gate transistors and BSPDN.

Read more

(Photo credit: Apple)

Please note that this article cites information from Wccftech and ET News.
  • Page 10
  • 38 page(s)
  • 189 result(s)

Get in touch with us