interposer


2024-07-18

[News] SK hynix Rumored to Team up with Amkor to Secure HBM Advantage over Samsung

As Samsung eagerly accelerates its pace on the HBM3e certification with NVIDIA, SK hynix, the current HBM market leader, is reportedly planning another move to strengthen its relationship with the AI giant. According to a report by Korean media Money Today, SK hynix is teaming up with Amkor Technology to target the silicon interposer market, eyeing to become a supplier for NVIDIA.

Citing sources from the semiconductor industry, the report notes that SK hynix has discussed with Amkor, the world’s second-largest OSAT (Outsourced Semiconductor Assembly and Test) company, about sending interposer samples. The process involves SK hynix sending its HBM and interposers to Amkor, which then combines them with GPUs from customers like NVIDIA to assemble AI accelerators.

A silicon interposer is a substrate on which GPUs and HBM are arranged and connected with the 2.5D/3D packaging. According to the report, drawing circuits on silicon to connect chips allows for more precise circuitry compared to using PCBs (Printed Circuit Boards) in traditional 2D packaging, which makes silicon interposers essential for packaging AI accelerators like NVIDIA’s A100 and H100.

Regarding the rumor, citing a SK hynix representative, the report states that the discussion is still in the early stages, while the company is conducting various reviews to provide interposers that meet customer demands.

It is worth noting that the entry barrier for silicon interposers seems to be high, as only a few semiconductor giants, including TSMC, UMC and Samsung, can supply silicon interposers with their own packaging technologies, such as TSMC’s CoWoS (Chip-on-Wafer-on-Substrate) technology and Samsung’s I-Cube.

As Samsung is currently providing NVIDIA with its silicon interposers and I-Cube packaging services, SK hynix tries to further expand its leadership in HBM by entering the silicon interposer sector, the report notes, which may also alleviate the supply shortage for HBM and interposers as NVIDIA’s AI accelerators are in high demand.

Read more

(Photo credit: SK hynix)

Please note that this article cites information from Money Today.
2023-09-01

[News] Rumored AI Chip Demand Spurs Price Hikes at TSMC, UMC, ASE

TSMC’s CoWoS advanced packaging capacity shortage is causing limitations in NVIDIA’s AI chip output. Reports are emerging that NVIDIA is willing to pay a premium for alternative manufacturing capacity outside of TSMC, setting off a surge in massive overflow orders. UMC, the supplier of interposer materials for CoWoS, has reportedly raised prices for super hot runs and initiated plans to double its production capacity to meet client demand. ASE, an advanced packaging provider, is also seeing movement in its pricing.

In response to this, both UMC and ASE declined to comment on pricing and market rumors. In addressing the CoWoS advanced packaging capacity issue, NVIDIA previously confirmed during its financial report conference that it had certified other CoWoS packaging suppliers for capacity support and would collaborate with them to increase production, with industry speculation pointing towards ASE and other professional packaging factories.

TSMC’s CEO, C.C. Wei, openly stated that their advanced packaging capacity is at full utilization, and as the company actively expands its capacity, they will also outsource to professional packaging and testing factories.

It’s understood that the overflow effect from the inadequate CoWoS advanced packaging capacity at TSMC is gradually spreading. As the semiconductor industry as a whole adjusts its inventory, advanced packaging has become a market favorite.

Industry insiders point out that the interposer, acting as a communication medium within small chips, is a critical material in advanced packaging. With a broad uptick in demand for advanced packaging, the market for interposer materials is growing in parallel. Faced with high demand and limited supply, UMC has raised prices for super-hot-run interposer components.

UMC revealed that it has a comprehensive solution in the interposer field, including carriers, customed ASICs, and memory, with cooperation from multiple factories forming a substantial advantage. If other competitors are entering this space now, they might not have the quick responsiveness or abundant peripheral resources that UMC does.

UMC emphasized that compared to competitors, its competitive advantage in the interposer field lies in its open architecture. Currently, UMC’s interposer production primarily takes place in its Singapore plant, with a current capacity of about 3,000 units, with a target of doubling to six or seven thousand to meet customer demand.

Industry analysts attribute TSMC’s tight CoWoS advanced packaging capacity to a sudden surge in NVIDIA’s orders. TSMC’s CoWoS packaging had primarily catered to long-term partners, with production schedules already set, making it unable to provide NVIDIA with additional capacity. Moreover, even with tight capacity, TSMC won’t arbitrarily raise prices, as it would disrupt existing client production schedules. Therefore, NVIDIA’s move to secure additional capacity support through a premium likely involves temporary outsourced partners.

(Photo credit: NVIDIA)

2023-08-25

[News] NVIDIA Establishes Non-TSMC CoWoS Supply Chain, UMC Doubles Interposer Capacity

According to a report from Taiwan’s Commercial Times, NVIDIA is aggressively establishing a non-TSMC CoWoS supply chain. Sources in the supply chain reveal that UMC is proactively expanding silicon interposer capacity, doubling it in advance, and now planning to further increase production by over two times. The monthly capacity for silicon interposers will surge from the current 3 kwpm (thousand wafers per month) to 10 kwpm, potentially aligning its capacity with TSMC’s next year, significantly alleviating the supply strain in the CoWoS process.

A prior report from Nomura Securities highlighted NVIDIA’s efforts since the end of Q2 this year to construct a non-TSMC supply chain. Key players include UMC for wafer fabrication, Amkor and SPIL for packaging and testing. NVIDIA aims to add suppliers to meet the surging demand for CoWoS solutions.

The pivotal challenge in expanding CoWoS production lies in insufficient silicon interposer supply. In the future, UMC will provide the silicon interposers for front-end CoW process, while Amkor and SPLI will take charge of the back-end WoS packaging. These collaborations will establish a non-TSMC CoWoS supply chain.

UMC states its current silicon interposer capacity stands at 3 kwpm. However, the company has decided to undertake a one-fold expansion at its Singaporean plant, targeting a capacity of around 6 kwpm. The additional capacity is anticipated to be progressively operational within 6 to 9 months, with the earliest projections for the first quarter of next year.

Yet, due to persistent robust market demand, it’s expected that even with UMC’s capacity expansion to 6 kwpm, it may not completely meet market needs. Consequently, industry sources suggest UMC has opted to further amplify silicon interposer capacity to 10 kwpm, aiming for a two-fold acceleration of production expansion. Addressing these expansion rumors, UMC affirms that growth in advanced packaging demand is an inherent trend and future focus, asserting their evaluation of capacity options and not ruling out the possibility of continuous enlargement of silicon interposer capabilities.

(Photo credit: Amkor)

2023-07-06

ASE, Amkor, UMC and Samsung Getting a Slice of the CoWoS Market from AI Chips, Challenging TSMC

AI Chips and High-Performance Computing (HPC) have been continuously shaking up the entire supply chain, with CoWoS packaging technology being the latest area to experience the tremors.

In the previous piece, “HBM and 2.5D Packaging: the Essential Backbone Behind AI Server,” we discovered that the leading AI chip players, Nvidia and AMD, have been dedicated users of TSMC’s CoWoS technology. Much of the groundbreaking tech used in their flagship product series – such as Nvidia’s A100 and H100, and AMD’s Instinct MI250X and MI300 – have their roots in TSMC’s CoWoS tech.

However, with AI’s exponential growth, chip demand from not just Nvidia and AMD has skyrocketed, but other giants like Google and Amazon are also catching up in the AI field, bringing an onslaught of chip demand. The surge of orders is already testing the limits of TSMC’s CoWoS capacity. While TSMC is planning to increase its production in the latter half of 2023, there’s a snag – the lead time of the packaging equipment is proving to be a bottleneck, severely curtailing the pace of this necessary capacity expansion.

Nvidia Shakes the foundation of the CoWoS Supply Chain

In these times of booming demand, maintaining a stable supply is viewed as the primary goal for chipmakers, including Nvidia. While TSMC is struggling to keep up with customer needs, other chipmakers are starting to tweak their outsourcing strategies, moving towards a more diversified supply chain model. This shift is now opening opportunities for other foundries and OSATs.

Interestingly, in this reshuffling of the supply chain, UMC (United Microelectronics Corporation) is reportedly becoming one of Nvidia’s key partners in the interposer sector for the first time, with plans for capacity expansion on the horizon.

From a technical viewpoint, interposer has always been the cornerstone of TSMC’s CoWoS process and technology progression. As the interposer area enlarges, it allows for more memory stack particles and core components to be integrated. This is crucial for increasingly complex multi-chip designs, underscoring Nvidia’s intention to support UMC as a backup resource to safeguard supply continuity.

Meanwhile, as Nvidia secures production capacity, it is observed that the two leading OSAT companies, Amkor and SPIL (as part of ASE), are establishing themselves in the Chip-on-Wafer (CoW) and Wafer-on-Substrate (WoS) processes.

The ASE Group is no stranger to the 2.5D packaging arena. It unveiled its proprietary 2.5D packaging tech as early as 2017, a technology capable of integrating core computational elements and High Bandwidth Memory (HBM) onto the silicon interposer. This approach was once utilized in AMD’s MI200 series server GPU. Also under the ASE Group umbrella, SPIL boasts unique Fan-Out Embedded Bridge (FO-EB) technology. Bypassing silicon interposers, the platform leverages silicon bridges and redistribution layers (RDL) for integration, which provides ASE another competitive edge.

Could Samsung’s Turnkey Service Break New Ground?

In the shifting landscape of the supply chain, the Samsung Device Solutions division’s turnkey service, spanning from foundry operations to Advanced Package (AVP), stands out as an emerging player that can’t be ignored.

After its 2018 split, Samsung Foundry started taking orders beyond System LSI for business stability. In 2023, the AVP department, initially serving Samsung’s memory and foundry businesses, has also expanded its reach to external clients.

Our research indicates that Samsung’s AVP division is making aggressive strides into the AI field. Currently in active talks with key customers in the U.S. and China, Samsung is positioning its foundry-to-packaging turnkey solutions and standalone advanced packaging processes as viable, mature options.

In terms of technology roadmap, Samsung has invested significantly in 2.5D packaging R&D. Mirroring TSMC, the company launched two 2.5D packaging technologies in 2021: the I-Cube4, capable of integrating four HBM stacks and one core component onto a silicon interposer, and the H-Cube, designed to extend packaging area by integrating HDI PCB beneath the ABF substrate, primarily for designs incorporating six or more HBM stack particles.

Besides, recognizing Japan’s dominance in packaging materials and technologies, Samsung recently launched a R&D center there to swiftly upscale its AVP business.

Given all these circumstances, it seems to be only a matter of time before Samsung carves out its own significant share in the AI chip market. Despite TSMC’s industry dominance and pivotal role in AI chip advancements, the rising demand for advanced packaging is set to undeniably reshape supply chain dynamics and the future of the semiconductor industry.

(Source: Nvidia)

  • Page 1
  • 1 page(s)
  • 4 result(s)

Get in touch with us