News
Amid the rising of emerging applications in the AI market, the booming demands for high-performance computing (HPC), high-bandwidth memory (HBM), CoWoS advanced packaging, and high-performance storage, have energized the wafer foundry industry.
Given the broader applicability of 12-inch wafer in advanced process chips, the global expansion of 12-inch wafer production has accelerated in recent years. Leading companies like TSMC, Intel, UMC, Vanguard International Semiconductor (VIS), SMIC, and Huahong have successively released production capacity.
On September 4, VIS and NXP jointly announced the approval of their Singapore-based 12-inch wafer fab joint venture by regulatory authorities in Taiwan, Singapore, and other regions.
The joint venture, named VisionPower Semiconductor Manufacturing Company (VSMC), will begin construction of its first 12-inch (300mm) wafer fab in the second half of this year.
VIS estimates that trial production will begin in 2027, with profitability expected by 2029. TSMC will provide technological support, and the market holds a favorable long-term outlook for the company’s operations.
Upon its mass production, both companies may consider building a second fab. Currently, VIS operates five 8-inch fabs located in Taiwan and Singapore. Three of the 8-inch fabs are in Hsinchu, and one in Taoyuan. The average monthly capacity of its 8-inch fabs in 2023 was about 279,000 wafers.
On August 20, TSMC held a groundbreaking ceremony for its new German fab, ESMC, which is set to begin construction by the end of the year and aims to start production by the end of 2027.
The project involves an investment of over EUR 10 billion and is expected to have a monthly capacity of 40,000 12-inch wafers, utilizing TSMC’s 28/22nm planar CMOS and 16/12nm FinFET process technologies.
In early September, Taiwan’s Ministry of Economic Affairs announced that TSMC plans to build a third fab in Japan to produce advanced semiconductors, with construction expected after 2030.
TSMC’s first fab in Kumamoto, Japan, officially opened on February 24, 2023, and will begin mass production in Q4 this year using 28/22nm and 16/12nm process technologies, with a monthly capacity of 55,000 wafers.
The second fab in Kumamoto is planned, with construction expected to start by the end of this year and operations to begin by the end of 2027, targeting 6/7nm nodes.
Additionally, TSMC’s 2nm fabs in Hsinchu (Fab 20) and Kaohsiung (Fab 22) in Taiwan are scheduled to start mass production next year.
In the U.S., TSMC’s first fab in Arizona is scheduled to begin producing chips using 4nm technology in the first half of 2025. The second fab will produce both 3nm and 2nm chips using next-generation nanosheet transistors, with production starting in 2025.
Plans for a third fab are also underway, with production of chips using 2nm or more advanced processes expected to begin in 2028.
On May 21, UMC held a ceremony for the settlement of equipment at its expanded Fab 12i in Singapore with the arrival of the first equipment.
UMC has operated 12-inch fabs in Singapore for over 20 years, and in February 2022, it announced the plan to invest USD 5 billion to expand Fab 12i, adding a new 12-inch fab with a monthly capacity of 30,000 wafers, focusing on 22/28nm processes. Mass production is expected by early 2026.
On May 23, Toshiba Electronic Devices & Memory Corporation announced the completion of its new 300mm power semiconductor manufacturing fab, with a total investment of JPY 100 billion and plans to begin production in March 2025.
The fab will be built in two phases, with the first phase starting production within the 2024 fiscal year. Once fully operational, Toshiba’s power semiconductor capacity will be 2.5 times that of 2021. Equipment installation is underway, with mass production expected in the second half of FY2024.
On March 13, Powerchip held a groundbreaking ceremony for a 12-inch wafer fab in partnership with India’s Tata Group, located in Dholera, Gujarat, with a total investment of INR 910 billion rupees (about USD 11 billion).
The fab will have a monthly capacity of 50,000 wafers and will produce chips using 28nm, 40nm, 55nm, 90nm, and 110nm nodes.
In early May, Powerchip also announced plans for a new 12-inch fab to expand advanced packaging capacity to support growing demand for AI devices. Powerchip’s chairman stated that the company will provide interposers, one of the three components in CoWoS packaging technology.
Texas Instruments is currently expanding its 300mm capacity to meet future demand for analog and embedded processing chips. TI plans to invest USD 30 billion in building up to four interconnected fabs (SM1, SM2, SM3, SM4) in the coming decades.
According to its 2022 roadmap, TI will build six 300mm fabs by 2030, with RFAB2 in Richardson, Texas, and LFAB (acquired from Micron) already starting production in 2022 and 2023, respectively. Two of the Sherman fabs were completed in 2023, with two more planned for 2026-2030.
In addition to the plan mentioned above, TI also announced the plan for a second 300mm fab in Lehi, Utah in February 2023, adjacent to its existing 12-inch fab, with production estimated to begin in 2026, focusing on producing analog and embedded processing chips. These fabs will be combined into one once the construction is completed.
On August 16, Texas Instruments announced that it received USD 1.6 billion in funding from the U.S. CHIPS Act. This funding will be used to build a cleanroom for the SM1 fab and complete the pilot production line, construct a cleanroom for LFAB2 to begin initial production, and build the shell for the SM2 fab.
Intel has disclosed chip expansion plans in multiple regions, including Arizona, New Mexico, Ohio, Oregon, Ireland, Israel, Magdeburg, Malaysia, and Poland. However, due to market challenges and poor financial results, some of Intel’s expansion plans have been delayed.
Currently, Intel is advancing the construction of large semiconductor manufacturing plants in Arizona and Ohio for the production of cutting-edge semiconductors, as well as working on equipment development and advanced packaging projects at smaller facilities in Oregon and New Mexico.
On February 19, the U.S. government announced a USD 1.5 billion subsidy for GlobalFoundries. According to a preliminary agreement with the U.S. Department of Commerce, GlobalFoundries will establish a new semiconductor manufacturing facility in Malta, New York, and expand its existing Fab 8 plant in the same location.
The facility will leverage manufacturing technology already implemented in GlobalFoundries’ plants in Germany and Singapore to produce automotive chips, effectively introducing mature-node technology into Fab 8.
In February of this year, GlobalFoundries also announced a partnership with Amkor Technology to build a large packaging facility in Portugal.
It plans to transfer the 12-inch wafer-level packaging production line from its Dresden plant to Amkor’s facility in Porto, Portugal, aiming to establish Europe’s first large-scale backend facility. GlobalFoundries will retain ownership of the tools, processes, and IP transferred to Porto.
In China, companies like SMIC, Huahong, CR Micro (Shenzhen), and Zensemi (Guangzhou) are making new progresses in 12-inch wafer production.
SMIC expects its monthly 12-inch wafer capacity to increase by 60,000 by the end of the year.
Huahong is speeding up the construction of its new 12-inch fab in Wuxi, with the first lithography machine installed on August 22, aiming for production in 1Q24.
CR Micro’s 12-inch fab in Shenzhen has entered the stage of equipment installation and debugging, with production expected to start in late 2024.
Zensemi’s 12-inch wafer manufacturing production line has went into production.
Read more
(Photo credit: TSMC)
News
Per a report by the Vietnam News Agency, Vietnamese Prime Minister Phạm Minh Chính recently signed Government Decree No. 791/QĐ-TTg on the establishment of the National Steering Committee for Semiconductor Industry Development.
The main tasks and functions of the steering committee include assisting the Prime Minister and the government in researching, guiding, and coordinating the resolution of important and cross-departmental matters related to promoting the development of Vietnam’s semiconductor industry; researching, consulting, and advising on directions and solutions to promote the industry’s growth; and guiding the coordination among various departments, government agencies, relevant organizations, and entities to vigorously advance the development of Vietnam’s semiconductor industry.
Semiconductor industry is one of the strategically important global industries, and it undoubtedly represents a significant development opportunity for Vietnam.
It is reported that the semiconductor, as one of Vietnam’s nine national-level products, has been included in the country’s key development priorities for the next 30 to 50 years.
According to its National Semiconductor Industry Strategy, Vietnam aims to become a global center for semiconductor chip design, packaging, and testing by 2030.
To achieve this goal, the Vietnamese government has introduced a series of preferential policies and incentives to encourage foreign enterprises to invest in the country.
Moreover, the government has established the National Innovation Center (NIC) to create a high-tech ecosystem and beef up the training of professionals to meet the needs of developing semiconductor industry.
Currently, Vietnam has drawn in investment from foreign enterprises such as Intel, ASE Group, Samsung Electronics, Amkor, Qualcomm, ONSemi, Renesas, Texas Instruments, NXP, Marvell, Synopsys, Hana, and Anpei. In fact, with global capital investment, Vietnam’s semiconductor industry ecosystem is gradually taking shape in recent years.
Vietnam’s Minister of Planning and Investment Nguyễn Chí Dũng stated that Vietnam boasts some conditions and factors conducive to the development of semiconductor industry, involving a stable political system, a favorable geographical location, and attractive investment incentive policies.
The Vietnamese government has been committed to developing semiconductor industry and hopes to attract more and more large enterprises to invest in Vietnam.
Read more
(Photo credit: Intel)
News
Automotive chip market, previously enjoying robust growth among the semiconductor sector, is now showing signs of slowing down.
According to a report from WeChat account DRAMeXchange, the major foundry UMC announced that it expects customer inventories in the communications, consumer electronics, and computer sectors to return to seasonal levels as usual in the second half of this year, and to reach healthy levels by the end of the year.
However, demand in the automotive end market remains weak, which may extend the period of inventory adjustment, with healthy levels anticipated only by the first quarter of next year.
Another foundry giant, TSMC, warned in its latest financial statement that the automotive market might decline this year in spite of a quarter-on-quarter increase of 5% in the revenue of its automotive electronics end market in 2Q24.
Meanwhile, the sluggish growth trend in the automotive chip market is also exemplified by the business performance of three leading automotive chip companies—Texas Instruments, STMicroelectronics, and NXP as they all saw declines in revenues.
Texas Instruments’ revenue for 2Q24 was USD 3.82 billion, down 16% YoY and the sales of its industrial and automotive business continue to decrease.
STMicroelectronics delivered revenue of USD 3.23 billion, down 25.3% YoY, with automotive business revenue falling short of expectation, offsetting growth in personal electronics sales.
NXP’s achieved revenue of USD 3.13 billion, down 5.2% YoY and its automotive business generated revenue of USD 1.728 billion, down 7.4% YoY, indicating the decline widened compared to the first quarter.
Despite the strong growth in the automotive chip market in 2023, the industry believes that as the overall automotive end market fails to advance as expected and there is an overcapacity in some automotive chip markets, automotive chip market growth will slow down in 2024, with the growth rate dropping to single digits in the coming years.
It’s learned that automotive semiconductor can be broadly categorized into microcontroller (MCU), computing chip (CPU, GPU, NPU, etc.), sensing chip (radar, image sensor, photoelectric sensor, etc.), memory chip (DRAM, NAND Flash, etc.), communication chip (CAN bus chip, connectivity chip, etc.), and power chip (IGBT, silicon carbide, etc.), among others.
In the view of the industry, current MCU and other chips are facing significant inventory pressure due to the declining automotive end market demand. However, power chip and autonomous driving chip continue to see strong demand driven by the wave of automotive electrification and intelligence.
Therefore, while the automotive semiconductor market may slow down in the short term, the automotive chip market still possesses growth potential in the long run with the continuous adoption of silicon carbide and autonomous driving chips in the increasingly popular EV and smart vehicle markets.
Read more
(Photo credit: Pixabay)
News
TSMC announced last year that it would build a plant in Dresden, Germany. The plant is originally expected to break ground as early as Q4 this year, but now it may start sooner. According to a report from Deutsche Welle, TSMC’s Dresden plant will begin construction within a few weeks, which means it will start this fall, aligning with the company’s previously announced timeline.
The TSMC Germany plant was initially scheduled to begin construction in the second half of 2024 and to start production by late 2027. The new plant is expected to create approximately 2,000 direct high-tech jobs. TSMC will hold a 70% stake in the plant, with Bosch, Infineon, and NXP each holding 10% stakes, and TSMC will operate the facility. The EU and the German government are subsidizing about half of the plant’s investment.
To ensure the plant can commence production smoothly in 2027, the city of Dresden is investing EUR 250 million to build an industrial water supply system and enhance the reliability of the local power grid.
The TSMC Germany plant is expected to use 28/22nm planar CMOS and 16/12nm FinFET process technologies, with a monthly production capacity of approximately 40,000 300mm (12-inch) wafers.
On the other hand, another global semiconductor giant, Intel, was said to have delayed its construction of Fab 29.1 and 29.2 in Magdeburg, Germany, as the new timeline pushed the start of construction to May 2025, according to a report by Tom’s Hardware, citing German media outlet Volksstimme.
Read more
(Photo credit: TSMC)
News
Due to the impact of international situations and uncontrollable factors, the global semiconductor supply chain is undergoing a shift. According to a report from WeChat account DRAMeXchange, the Southeast Asian region, with its advantages in labor and development conditions, has become the preferred location for major global companies. Countries such as Malaysia, India, and Singapore have been targeted by many manufacturers, who are rapidly setting up operations to secure a foothold.
On June 5, Taiwan-based contract chipmaker Vanguard International Semiconductor Corp. (VIS) announced to team up with Netherlands-based semiconductor supplier NXP Semiconductors N.V. to set up a joint venture, VisionPower Semiconductor Manufacturing Company (VSMC), and build a 12-inch fab in Singapore.
The fab will have an investment of approximately USD 7.8 billion. VIS will invest USD 2.4 billion and take a 60% stake, with NXP to invest USD 1.6 billion and a 40% share. The fab will be operated by VIS.
Besides, both parties have promised to allocate a total of USD 1.9 billion of long-term capacity security deposit and usage fees, with the remaining funds (Loans included) to be provided by third parties.
VSMC will run as an independent wafer manufacturing service provider, offering a certain proportion of its capacity to both partners. By 2029, the fab’s monthly 12-inch wafer capacity is expected to reach 55,000 pieces, which is projected to create around 1,500 jobs in Singapore. Following the successful mass production of the first fab, both sides will consider building a second one.
This fab will use 130nm to 40nm technologies to produce mixed-signal, power management, and analog products for markets including automotive, industrial, consumer electronics, and mobile terminals. Relevant technology licensing and transfers are expected to come from TSMC. VSMC will commence construction of the first fab in 2H24 , pending approval from relevant regulatory authorities, and it is expected to start mass production in 2027.
Currently, VIS has five 8-inch fabs, respectively located in Taiwan and Singapore. Three of them are based in Hsinchu (Taiwan) and one in Taoyuan (Taiwan). In 2023, the average monthly capacity was about 279,000 8-inch wafers.
On this collaboration with NXP, VIS Chairman Fang Leuh stated that both parties wish to own a 12-inch fab as they currently only have 8-inch fabs. More than half of the new fab’s capacity has already reserved upon long-term commitments from customers, including NXP. He also noted that setting up a fab in Singapore offers several advantages.
Since VIS is held by TSMC, industry experts believe that the establishment of the new VIS fab is driven in part by the need to meet the demands of TSMC’s mature process customers. Mature processes above 90nm account for a small single-digit percentage of TSMC’s revenue but retaining all customers is also necessary to match orders from various manufacturing capacities.
As such, VIS will take over TSMC’s customer orders. Influenced by multiple factors, the order transfer effect is expanding, and VIS has recently received new orders from several customers, like Qualcomm and MPS. That means order transfer effect in 2H24 has become evident.
It is worth noting that Singapore is being seen as a critical hub of the Asian semiconductor industry. It currently boasts a complete semiconductor industry chain, covering design, manufacturing, packaging, test, equipment, materials, and distribution, with more than 300 semiconductor-related companies already established.
According to another report from WeChat account DRAMeXchange, multitudes of semiconductor companies, including Texas Instruments, STMicroelectronics, Infineon, Micron, GlobalFoundries, TSMC, UMC, VIS, and ASE, have set up branches or expanded production in Singapore.
Read more
(Photo credit: VIS)