News
According to a report from South Korean media ETNEWS, Samsung Electronics has appointed former Onsemi director Stephen Hong as Vice President to oversee the SiC (Silicon Carbide) power semiconductor business. They’ve also set up an internal department dedicated to SiC power semiconductors.
Stephen Hong, an expert in power semiconductors with around 25 years of experience at major global companies like Infineon, Fairchild, and Onsemi, is leading this effort after joining Samsung.
Stephen Hong is currently in the process of assembling a team for SiC commercialization, while actively engaging with South Korea’s power semiconductor industry ecosystem and academic institutions for market and business feasibility studies. It’s noteworthy that when Samsung officially ventured into the GaN (Gallium Nitride) business, it had also formed relevant business teams in advance.
It’s expected that Stephen Hong will be pivotal in devising the direction and strategies for Samsung’s SiC power semiconductor business. In addition, Samsung Electronics has commenced comprehensive preparations for the GaN power semiconductor business. Samsung’s commitment to this endeavor is underlined by its decision to acquire Aixtron’s latest MOCVD equipment, specifically for processing GaN and SiC wafers. This investment is estimated to be at least 700-800 billion Korean won, roughly equivalent to 0.54-0.62 billion US dollars.
Although Samsung’s third-generation semiconductor foundry business is expected to launch in 2025, it is currently in the research and sample stage, necessitating significant investments in equipment to support future mass production endeavors.
In accordance with TrendForce’s analysis, the global SiC power device market is projected to reach $2.28 billion in 2023, with a notable YoY growth of 41.4%. It is expected to expand to $5.33 billion by 2026.
Samsung made a strategic shift by planning to produce GaN and SiC semiconductors on 8-inch wafers, deviating from the common 6-inch approach and gaining industry attention. The increased focus on SiC aligns with the challenges faced by its wafer foundry business, where fluctuations in fab utilization rates significantly impact financial performance.
According to the most recent research from TrendForce, there’s an expectation that Samsung’s utilization rate for its 8-inch wafer fabrication facility could drop to 50% in 2024. This decline is largely due to a worldwide reduction in semiconductor demand, compounded by geopolitical factors, creating a tough business environment that has affected Samsung’s order volume.
As the demand for SiC and GaN power semiconductors continues to rise and Samsung confronts challenges in its Si wafer business, the company, along with competitors like DB Hitek and Key Foundry, is gearing up to launch 8-inch GaN foundry services. This strategic move is anticipated to come to fruition between 2025 and 2026.
In response to these multifaceted dynamics, Samsung has taken an accelerated approach to GaN and SiC, with the aim of capturing a more substantial market share and breathing new life into its traditional wafer foundry business.
Explore more:
(Image: Samsung)
News
A global supplier in materials, networking, and lasers, Coherent announced that DENSO Corporation and Mitsubishi Electric Corporation have agreed to invest an aggregate $1 billion in its silicon carbide business (the “Business”). The transaction results from the strategic review process announced in May 2023 for the Business.
Under the terms of the transaction, DENSO and Mitsubishi Electric will each invest $500 million in exchange for a 12.5% non-controlling ownership interest in the Business, with Coherent owning the remaining 75%. Prior to the completion of the transaction, Coherent will separate and contribute the Business to a subsidiary. Coherent will control and operate the Business, which will continue to be led by Sohail Khan, Coherent’s Executive Vice President, New Ventures & Wide-Bandgap Electronics Technologies.
In connection with the transaction, the Business will enter into long-term supply arrangements with DENSO and Mitsubishi Electric that support their demand for 150 mm and 200 mm silicon carbide (“SiC”) substrates and epitaxial wafers.
“We are excited to expand our strategic relationships with DENSO and Mitsubishi Electric to capitalize on the significant demand for silicon carbide,” said Dr. Vincent D. Mattera, Jr., Chair and CEO, Coherent. “After a thorough review of strategic alternatives for our Silicon Carbide business, we determined that the creation of a separate subsidiary and the strategic investments from DENSO and Mitsubishi Electric, two leaders in SiC power devices and modules, is the best path forward to maximize shareholder value and position the Business for long-term growth. The investments from our strategic partners will be used to accelerate our capacity expansion plans and help sustain our leadership position, while ensuring the development of a robust and scalable supply for the rapidly growing market for SiC-based power electronics, largely driven by the explosive growth of the global electric vehicle market.”
“We are very pleased to establish a strategic relationship with Coherent, which has a world-class track record in SiC wafer manufacturing. Through this investment, we will secure a stable procurement of SiC wafers, which are critical for BEVs, and contribute to the realization of a carbon-neutral society by promoting the widespread adoption of BEVs,” said Shinnosuke Hayashi, President & COO, Representative Member of the Board at DENSO.
Dr. Masayoshi Takemi, Executive Officer, Group President, Semiconductor & Device of Mitsubishi Electric, said: “Demand for SiC power semiconductors is expected to grow exponentially as the global market for electric vehicles increases in line with the transition to a decarbonized world. To capitalize on this trend, we have decided to expand our SiC power semiconductor production capacity, including by constructing a 200 mm wafer plant in the Shisui area of Kumamoto Prefecture. We are delighted to strengthen our partnership with Coherent by investing in this new SiC company, which will provide us with a stable supply of high-quality SiC substrates essential for our increased supply capacity.”
Explore More
(Photo credit: Coherent)
News
As semiconductor fabrication technologies continue to advance, the number of transistors in integrated circuits (ICs) has steadily increased. Initially, ICs contained only tens of transistors, but as technology progressed, ICs integrating hundreds of thousands of transistors enabled the realization of 3D animation. ICs with millions of transistors allowed computers to enter households, and today, ICs with hundreds of billions or even trillions of transistors enable digital technology to connect the entire world, profoundly impacting people’s lives.
Over the past 65 years, semiconductor fabrication processes have rapidly evolved, driven by Moore’s Law, gradually reshaping society. However, in recent years, semiconductor processes have approached physical limits, and the failure of Moore’s Law has been a topic of concern. In response, 3D IC stacking and heterogeneous integration technologies have emerged as promising solutions.
3D Stacking Trends
With the rapid development of applications such as AI, AR/VR, and 8K, a significant demand for computation is expected to continue, particularly driving parallel computing systems capable of handling vast amounts of data in a short time. As semiconductor processes slow down, 3D packaging has become an effective means to extend Moore’s Law and enhance IC computing performance.
3D packaging technology offers numerous advantages over traditional 2D packaging. It enables size reduction, with silicon interposer efficiency exceeding 100%, improved connectivity, reduced parasitic effects, lower power consumption, lower latency, and higher operating frequencies. These advantages, along with various benefits of 3D integration and interconnection technologies, make 3D packaging a development direction pursued by major players in the industry.
imec’s Vision for 3D Technology
In the field of 3D stacking technology, imec (imec, the Belgian Interuniversity Microelectronics Centre) defines four categories of 3D integration solutions: 3D-SIP, 3D-SIC, 3D-SOC, and 3D-IC, each requiring different process solutions and 3D integration techniques. Eric Beyne, VP R&D, Director 3D System Integration Program at imec specifically notes that concerning 3D interconnection technology, the scope of 3D interconnection will extend from stack packaging below 1 millimeter (mm), such as Package-on-Package (POP), to below 100 nanometers (nm) with true 3D ICs using transistor stacking, surpassing an interconnect density of 108/mm².
imec identifies three key elements in 3D integration technology: Through-Silicon Via (TSV), die-to-die and die-to-wafer stacking and interconnection, and wafer-to-wafer bonding technology. Beyne points out that TSV miniaturization technology continues to evolve. However, regarding “interconnect gaps,” as TSVs further shrink, microbump technology may struggle to meet higher interconnection demands, making cu-cu hybrid bonding technology a focus of development.
▲The image shows imec’s 3D interconnect technology roadmap, illustrating that as packaging technology continues to advance, node sizes shrink, and density further increases in 3D packaging. (Source:ISSCC 2021)
3D-SIP
System-in-Package (SIP), a form of system-level packaging, connects multiple chips that undergo different fabrication processes and preliminary packaging using heterogeneous integration techniques, integrating them within the same packaging shell. 3D-SIP involves vertically stacking multiple SIP chips, including packaging interconnects, fan-out wafer-level packaging, and solder ball bonding.
▲The image on the left is a schematic diagram of 3D-SIP packaging, where the connection points on both sides of the PCB board link the chips that have undergone initial packaging from top to bottom. The image on the right is an actual product illustration. (Source:TrendTorce (Left),ISSCC 2021(Right))
Currently, the connection pitch in existing solutions is approximately 400 micrometers (µm). imec’s research aims to increase the interconnectivity of such SIPs by 100 times, reducing connection pitch to 40 µm. Common applications of 3D-SIP packaging include RF FEMs, TWS Barbuds SoCs.
3D-SIC
The second category, 3D-SIC (Stacking IC), involves the stacking of individual chips on top of each other. 3D-SIC is achieved by stacking chips on an interposer or wafer, with the finished chips bonded to the top of the wafer. Chips are interconnected through TSVs and microbumps, with industry solutions achieving pitch sizes as small as 40 µm. The technology is applied to products like 3D-DRAM and logic chips, connected alongside optical I/O units on the interposer. Currently, 3D-SIC technology is widely used in High-Bandwidth Memory (HBM) manufacturing.
▲The image depicts a schematic diagram of 3D-SIC, which utilizes cu-cu hybrid bonding technology to connect the upper and lower layers of ICs. (Source:imec)
3D stacking packaging is leading the global semiconductor industry, and imec has outlined a development blueprint focused on reducing interconnection pitch and increasing contact density per unit area, positioning 3D stacking as a solution to continue Moore’s Law amid slowing semiconductor processes.
Explore More
This article is from TechNews, a collaborative media partner of TrendForce.
(Photo credit: TSMC )
News
In recent developments, an industry source revealed that Coherent, a leading chip material supplier in the U.S. automotive industry, has piqued the interest of four major Japanese corporate groups with regards to its silicon carbide (SiC) business, with a transaction amount potentially reaching $5 billion.
The four Japanese companies involved are DENSO, Hitachi, Mitsubishi Electric, and Sumitomo Electric, and discussions have been underway regarding the acquisition of minority stakes in Coherent’s SiC business.
Coherent had previously stated its intention to invest $1 billion over the next decade to expand the production of SiC wafers. Compared to traditional silicon chips, SiC wafers contribute to improved electric vehicle range. If this investment materializes, it would significantly ease the financial burden on the company. However, no concrete agreements have been reached at this stage.
Data indicates that Coherent is one of the few companies globally with complete and vertically integrated SiC manufacturing capabilities. It can produce SiC wafers and epitaxy materials, extending all the way to power devices. Furthermore, Coherent’s SiC materials are known for their exceptional quality, making it nearly the only supplier capable of transitioning from the current standard wafer diameter of 150 millimeters to 200 millimeters successfully. The production of larger diameter wafers can substantially reduce device costs. Additionally, Coherent’s SiC power devices demonstrate excellent heat resistance and conductivity.
Competition and Collaboration in the Japanese SiC Industry
According to TrendForce’s latest analysis, as collaborations between companies like Infineon and ON Semiconductor with automotive and energy sector stakeholders become more apparent, the overall SiC power device market is projected to reach $2.28 billion in 2023, growing at an annual rate of 41.4%.
Meanwhile, buoyed by robust demand in downstream application markets, TrendForce anticipates that the SiC power device market could reach $5.33 billion by 2026, with its primary applications continuing to center around electric vehicles and renewable energy.
In recent years, the new energy vehicle industry has been thriving, and Si power devices have gradually fallen short of meeting the demands of new energy vehicles. SiC, as its alternative, has shown remarkable performance in applications, making it highly sought after in the market. The SiC power device market still has considerable room for growth, prompting both automotive and SiC companies to invest in SiC power device production or enhancements.
Japan, being a leader in semiconductor power device manufacturing and production, has numerous companies actively expanding to broaden their market reach.
On October 4th last year, Nikkan reported that Hitachi Power Semiconductor Device would invest several billion yen, aiming to triple its SiC power semiconductor production capacity by fiscal year 2026.
On July 12th this year, ROHM announced its acquisition of the former Solar Frontier factory in Kunitomi, Miyazaki, to expand its SiC power semiconductor production capacity. The acquisition is set to conclude in October 2023 and is planned to become the company’s main factory, primarily producing SiC power semiconductors. It is expected to increase its silicon carbide capacity to 35 times that of the fiscal year 2021 by 2030.
With these competitive and cooperative scenarios unfolding, it’s evident that neither automotive nor SiC companies are holding back in their pursuit of SiC power device production or improvements.
In July this year, Renesas Electronics signed a 10-year agreement and paid $2 billion in advance to Wolfspeed for the supply of 150mm bare and epitaxial SiC wafers. Renesas Electronics also reached an agreement with Mitsubishi Electric, with Mitsubishi investing 260 billion yen in technology and expansion, including the construction of a new SiC factory in Japan.
As a technological leader in producing SiC substrates, epitaxy, and power devices, Coherent is not to be overlooked by these major corporations.
On May 26th this year, Coherent and Mitsubishi Electric announced that they had signed a MOU and reached a project collaboration agreement to jointly scale up the mass production of SiC power electronic products on a 200mm technology platform.
Mitsubishi Electric announced that it would invest approximately 260 billion yen over a five-year period ending in March 2026, with approximately 100 billion yen dedicated to constructing a new SiC power device factory based on a 200mm technology platform and strengthening related production facilities. According to the MOU, Coherent will develop 200mm n-type 4H SiC substrates for Mitsubishi Electric’s future SiC power devices to be produced at the new factory.
In the future, Mitsubishi Electric aims to produce large quantities of silicon carbide chips using Coherent’s 200mm wafer technology in the Japanese market.
In the 2023 fiscal third-quarter earnings conference call, Mary Jane Raymond, the Chief Financial Officer of Coherent Inc., mentioned that the revenue composition of the company’s four main markets is as follows, based on regional distribution: North America accounts for 53%, Europe accounts for 20%, Japan and Korea account for 14%, China accounts for 11%, and 3% goes to other regions worldwide.
For Coherent, capturing 14% of the sales in the Japanese and Korean markets is highly significant. If Coherent continues its collaboration with Japanese partners, it is highly probable that the production capacity of SiC power devices in Japanese-related companies will be increased. Additionally, this will allow Coherent to further expand its influence and presence in Japan.
(Photo credit: Coherent)
In-Depth Analyses
Leveraging their exceptional material characteristics, SiC components are rapidly making inroads into sectors such as automotive, renewable energy, and power PFC. Similarly, GaN components are excelling in the field of rapid charging for terminal devices. Additionally, GaN components are gaining greater visibility in the automotive and networking sectors.
In traction inverters and onboard chargers for electric vehicles, SiC components have already become the mainstream alternative to Si components. Furthermore, the demand for SiC components in automotive DC/DC converters continues to rise. As for GaN components, their potential remains significant in onboard chargers for electric vehicles, and their competitive edge is increasingly evident in automotive electronic components, LiDAR, wireless communication modules, and audio systems. It is estimated that by 2025, in the GaN component application market share, the new energy vehicle sector will account for 21%, representing an approximately 9% growth from 2023.
Considering China’s position as the world’s largest automobile market, domestic automakers in China are highly enthusiastic about adopting innovative technologies and applications. It is anticipated that the Chinese market will be a major driver of demand for automotive GaN components. On the other hand, in the context of ongoing tensions between China and the United States, semiconductor self-sufficiency has become China’s primary policy for breaking through technological barriers and sustaining technological development momentum. Compound semiconductor is a project actively promoted by both the Chinese government and private sector, making China’s GaN component supply chain even more worthy of attention.
Currently, China’s domestic major GaN substrate and epitaxy suppliers include Sino Nitride Group and Nanowin. Companies specializing in GaN epitaxy include SinoGaN, Enkris Semiconductor, Genettice, and Best Compound Semiconductor. IDM manufacturers in this field include Sanan Optoelectronics, Silan, Runxin, CorEnergy, Innoscience, and SMEI. As the demand for automotive GaN components in China continues to rise, these aforementioned companies may seize the opportunity.