SiC


2023-05-02

SiC vs. Silicon Debate: Will the Winner Take All?

The SiC market has been very active lately, with constant news coming from device suppliers and car makers. And there seems to be an ongoing tug-of-war between supply and demand.

Toshiba announced in April the groundbreaking of its power semiconductor fab for SiC in Ishikawa Prefecture, with the first stage beginning in the 2024 fiscal year. This news echoes earlier reports from Japanese media that Toshiba is strengthening the vertical integration throughout SiC equipment, wafers, and devices, and planning to increase the production by three times in 2024 and 10 times by 2026.

Meanwhile, over the past two years, leading companies in the Europe and the US such as Infineon and ST have also accelerated M&A as well as internal expansion for SiC production devices at an unprecedented pace, aiming to expand their SiC-related businesses and maintain their core competitiveness in the market.

Despite aggressive demand-driven expansion plans, the unexpected announcement from Tesla in mid-March that it plans to reduce overall SiC usage by 75% in the next generation of electric vehicle platforms has sparked various speculations in the industry. This move was made without compromising the performance and efficiency of the cars and represents one of the few specific details that Tesla has revealed about its new car plans.

Now here is the question – will the popularity of SiC be a genuine trend, or merely a passing fad that could lead to a potential bubble in the market?

SiC or Si-based solutions?

Compared to IGBT and MOSFET, the dominant technologies in power semiconductor, SiC offers stronger advantages such as low resistance, high temperature and high voltage tolerance that can overcome the technical bottlenecks of EVs by improving battery efficiency and solving component heat dissipation issues. SiC can also make chip design sizes smaller, which means more flexibility in vehicle design.

These advantages have made SiC the most sought-after technology. According to TrendForce, the SiC power device market is expected to grow at a CAGR of 35% to reach $5.33 billion annually from 2022 to 2026, driven by mainstream applications such as electric vehicles and renewable energy.

There is a long-standing debate among the industry about whether SiC will replace IGBTs entirely. What we believe is that SiC may not completely replace IGBTs considering their distinct targeted use scenarios.

In terms of use cases, SiC is particularly suitable for high-frequency, high-voltage applications, especially in the field of new energy vehicles. Traditional Si-based IGBT chips have reached the physical limit in high-voltage fast charging models, making SiC more favorable for new energy vehicles.

However, SiC transistors are expensive due to complex production processes, slow crystal growth, and difficult cutting. Unlike silicon, which can be pulled quickly, SiC crystals grow at a slow rate of 0.2-1mm/hour and are prone to cracking during the cutting process due to their high hardness and brittleness, leading to hundreds of hours of cutting time.

Additionally, SiC transistors also have some drawbacks such as vulnerability to damage and temperature sensitivity, which makes them unsuitable for low-cost and low-power applications.

IGBT, on the contrary, is preferred over SiC in such a field because it is more cost-effective, reliable, and has better capacitance and surge capability for high-power and high-current applications. In certain scenarios, such as DC-DC charging piles, IGBT is irreplaceable due to its cost advantage and suitability.

Could a Hybrid Solution be the Answer?

The premise above can help to explain Tesla’s conflicting decision to cut back on SiC usage.

Tesla’s reluctance to fully adopt SiC technology is mainly due to concerns about reliability and supply chain stability, as evidenced by a mass recall of Model 3 due to issues with SiC components in the rear electric motor inverter.

In addition, the shortage of substrate materials is another challenge facing the SiC industry as a whole, with major manufacturers such as Wolfspeed, Infineon, and ST ramping up production capacity to address the issue. As a result, Tesla is considering alternative ways to mitigate the risks associated with supply chain constraints.

Despite these challenges, SiC remains a promising trend for the EV industry. Even Tesla recognizes its enormous potential commercial value.

In terms of technological innovations, Tesla’s next-generation EVs may feature a novel packaging design for the primary inverter, utilizing a hybrid SiC/Si IGBT packaging approach that leverages the unique strengths of both technologies while avoiding potential pitfalls. This technological advancement poses certain difficulties, but the groundbreaking innovation at the engineering design level is definitely something to look forward to.

Read more:

(Photo credit: Tesla)

2023-04-21

The M&A battle for SiC: Who’s the Top Acquirers?

The compound semiconductor market has been flourishing in recent years thanks to the strong demand from markets such as electric vehicles and renewable energy. This has led to an increase in M&A as companies race to establish their position in the industry.

The market has seen a significant surge in M&A deals over the last few years: from 2006 to 2017, there was only one deal every two years, but since 2018, there have been six deals annually, surpassing historical data.

While SiC and GaN are the top categories for M&A, 21 of the transactions are directly related to SiC. This is because after its development over 20 years, SiC has been able to be mass-produced for market demands, particularly in the automotive industry where SiC has become the mainstream technology.

Vertical Integration driven by Industry Titans

Industry leaders in the US and Europe, such as Wolfspeed, On Semi, II-VI, ST, and Infineon, have started accelerating vertical integration in recent years, as reflected in the frequency of M&A.

The United States has led 12 M&A deals, with only four of them occurring before 2018, and Wolfspeed contributed to three of them. Over the past three years, On-Semi, II-VI, and Macom have led several deals with a focus on SiC’s vertical integration to meet market demands.

In Europe, there were eight M&A deals in total, all of which took place in 2018 and beyond, with ST and Infineon being the major players. Both companies have been accumulating technical strength through strategic acquisition to maintain their leading ground in the SiC power device market.

In 2019 and 2020, ST acquired Norstel AB to bolster its SiC wafer manufacturing capabilities and Exgan to improve the GaN power device design expertise. Similarly, Infineon acquired Siltectra GMbH in 2018 to gain control of the crucial SiC wafer cold split process technology and recently acquired GaN Systems to reinforce its presence in the GaN market.

It’s evident from the cases that the high frequency of M&As in the US and Europe is mainly driven by leading companies in the industry, gradually defining the landscape of the market.

Wolfspeed, which has grown into a leading company after a long period of time, has accumulated enough capital for M&A and gradually been transforming into a platform-type company. Meanwhile, Onsemi, ST, and Infineon, which have traditionally been platform-type companies with established expertise in the field of compound semiconductors, are now ramping up their M&A activities to expand market presence and generate strong growth momentum.

Market Landscape Continues to Change

M&A deals among semiconductor equipment companies are also receiving attention. Recently, ASM and Veeco have successively acquired LPE and Epiluvac, indicating that equipment manufacturers have also realized the huge potential of the SiC market and are accelerating their investment.

Given the rapid technology breakthroughs, the overall SiC power device market is predicted to grow at an annual rate of 41.4% to reach $2.28 billion by 2023 and $5.33 billion by 2026 at 35% annual growth, according to TrendForce’s latest report.

However, with the current market boom comes a new challenge – the supply shortage. One of the biggest obstacles to industry growth is the scarcity of SiC substrate material, despite efforts from companies like STM and Onsemi to ramp up their production.

Manufacturers are now on the hunt for both internal and external sources to keep the supply flowing. While most of the SiC substrate suppliers are expanding, only a few, like Wolfspeed, are controlling the manufacturing capacity for high-end SiC substrates used in automotive main inverters, which worsens the bottleneck in SiC devices’ production for cars.

With that being said, major players must quickly address technology hurdles and supply issues to bridge the market gap. This will inevitably drive intense competition and industry consolidation, and only the ones that can adapt quickly will be thriving in the long run.

Read more:

2023-03-06

Tesla Plans to Reduce SiC Content by 75% for Its Next EV Platform, so New Package Solution and Trench MOSFET Could Be Crucial in Achieving This Feat

Tesla recently announced that its next-generation EV platform will reflect a 75% reduction in SiC components, though this reduction will be made without compromising vehicle performance and safety. This announcement is one of the very few specific details that Tesla has provided to the public about its plan for the development of its future vehicle models. Therefore, it has also trigger a variety of speculations across the automotive industry. According to TrendForce’s investigation, Tesla does not appear to have much confidence in the stability of the supply chain for SiC components. In the past few years, Tesla has been forced to initiate several recalls for the Model 3. One official reason given for the recalls was that the inverters of some of the Model 3 had power semiconductor components with minor manufacturing differences. As a result, these inverters could malfunction after a period of operation and would not able to perform the regular task of current control. This explanation directly points to a quality issue with the SiC components that Tesla has procured for its vehicles.

Additionally, a production capacity crunch for substrates has been the most significant challenge in the development of the market for SiC components. The major suppliers for SiC components and SiC substrates such as Wolfspeed, Infineon, and STMicroelectronics are currently adding a lot more production capacity. At the same time, Tesla is proceeding with the strategy of diversifying its suppliers for SiC components in order to minimize the risk of disruptions in the supply chain.

SiC components are certainly a key category of automotive electronic components that EV manufacturers like Tesla are going to consider when building their future vehicle models. Therefore, in the context of technological advancements, TrendForce believes that Tesla could adopt a hybrid SiC-Si IGBT package for the inverter of its next-generation EV platform. However, switching to such solution will entail disruptive innovations at the engineering and design levels, so this transition will raise many challenges. Also, regarding SiC MOSFETs that have been a critical part of today’s EVs, TrendForce anticipates that their mainstream structural design will transition from planar to trench. Currently, Infineon, ROHM, and BOSCH are the main suppliers for trench SiC MOSFETs.

On the whole, the hybrid SiC-Si IGBT package and trench SiC MOSFETs are technologies that can substantially reduce the total cost of SiC components for a vehicle. They also reduce the complexity and cost of an entire vehicle platform. These benefits, in turn, can help raise the penetration rate of SiC components in the low-end and midrange segments of the EV market. On the other hand, the widening adoption of SiC components could affect the market share of Si IGBTs.

In the market for automotive SiC components, Tesla has been acting as a major indicator of demand and product development trends. Therefore, the semiconductor industry has been paying close attention to this carmaker’s activities. Since Tesla has so far given very few details about its next-generation EV platform, TrendForce says more observations are needed to determine the reasons behind the reduction in SiC content.

2022-09-15

Market Value of SiC Power Semiconductors Estimated to Reach US$1.589 billion in 2022, European and US IDMs Retain Market Hegemony

Looking at the development of the global SiC (silicon carbide) industry, IDMs in Europe and the United States occupy an absolute leading position, with the United States accounting for more than half of the market share in the substrate material sector. In order to ensure long-term and stable development of the SiC business, major manufacturers have also successively intervened in key upstream substrate materials in an effort to control the supply chain. Therefore, vertical integration has become an important trend in the development of the SiC industry. The global market value of SiC power semiconductors is estimated to be approximately US$1.589 billion in 2022 and will reach US$5.302 billion by 2026, with a CAGR of 35%.

Wolfspeed holds more than half the world’s SiC substrate market share and is first to move to 8-inch wafers

SiC substrates are characterized by difficult growth conditions, arduous processing, and high technical thresholds, which have become a key constraint on downstream production capacity. At present, only a few manufacturers such as Wolfspeed, ROHM, ON Semi, and STM have the ability to independently produce SiC crystals. From the perspective of SiC substrate market share in 2021, the leading players in order of market share are: Wolfspeed at 62%, II-VI at 14%, SiCrystal at 13%, SK Siltron at 5%, and TankeBlue at 4%.

Increasing the number of components on a single wafer is one of the main methods of further reducing the cost of SiC power components, so the industry is fully promoting 8-inch transformation. 8-inch SiC wafers have issues such as difficult material growth, laborious dicing, and losses during dicing. At this stage, yield rate is low. Therefore, 8-inch SiC wafers will not have much impact on the industry in the short term but, in the long run, with breakthroughs in material growth and process yield, the final chip cost of 8-inch wafers will inevitably present great advantages.

SiC MOSFET market highly competitive, STM comes out on top

With the successful application of high-quality 6H-SiC and 4H-SiC epitaxial layer growth technology in the 1990s, the research and development of various SiC power components entered a period of rapid development, leading to their current ubiquity in sectors such as the automotive and industrial fields. From the perspective of competition patterns in the SiC power component market, as Tesla’s first SiC supplier, STM took first place in 2021 with a market share of 41%, Infineon took second place with 22%, followed by Wolfspeed, ROHM, ON Semi and other manufacturers.

TrendForce indicates, from the perspective of SiC MOSFET technology, trench structure’s powerful cost and performance advantages will see it become the mainstream technology in the future. Infineon and ROHM have been working on this a long time and these two companies have successively introduced this structure to the market as core products. STM, Wolfspeed, and On Semi still employ planar structures at this stage but their next generation products will also move to trench structures.

(Image credit: Pixabay)

2022-05-11

Third-generation Semiconductor Development from the Perspective of Photovoltaic Energy Storage Applications

With the continuous deterioration of the global environment and the exhaustion of fossil fuel energy, countries around the world are looking for new energy sources suitable for human survival and development. The construction of photovoltaic energy storage projects is an important measure to implement energy transformation. Third-generation semiconductors have the characteristics of high frequency, high power, high voltage resistance, high temperature resistance, and radiation resistance, which can promote highly efficient, highly reliably, and low cost of photovoltaic energy storage inverters and the green and low-carbon development of energy.

SiC will be widely used in high-power string/central inverters, while GaN is more suitable for household micro-inverters

As the photovoltaic industry enters the era of “large components, large inverters, large-span brackets, and large strings,” the voltage level of photovoltaic power plants has increased from 1000V to over 1500V and high-voltage SiC power components will be used extensively in string and centralized inverters. For residential micro-inverters with a power of up to 5kW, GaN power components have more advantages. Not only can they significantly improve overall conversion efficiency, effectively reduce the levelized cost of energy (LCOE), but also allow users to easily build smaller, lighter, and more reliable inverters.

Key SiC substrates are crucial to the development of third-generation semiconductors and major manufacturers are competing to get to market

SiC substrate is regarded as the core raw material of third-generation semiconductors. Its crystal growth is slow and process technology complex. Mass production is not easy. Conductive substrates can produce SiC power electronic components while semi-insulating substrates can be used for the fabrication of GaN microwave radio frequency components. In addition, due to the high difficulty of substrate preparation, its value is relatively high. The cost of SiC substrate accounts for approximately 50% of the total cost of components which demonstrates its importance in the industrial chain.

At present, the supply of the global SiC market is firmly in the hands of substrate manufacturers. Wolfspeed, II-VI and SiCrystal (subsidiary of ROHM) together account for nearly 90% of shipments. IDM manufacturers such as Infineon, STM, and Onsemi are actively developing upstream SiC substrates and expect to take full advantage of the supply chain to strengthen their competitiveness. Everyone wants to get a piece of the pie, so the battle for SiC substrates will become more and more fierce, but the wait will not be long to see where the industry eventually goes in coming years.

(Image credit: Pixabay )

  • Page 8
  • 9 page(s)
  • 42 result(s)

Get in touch with us