SK Hynix


2024-06-12

[News] DDR3 Price Rebound Expected in the Upcoming Quarters, Benefiting Taiwanese Manufacturers

As the standard DRAM market experiences an unprecedented cycle of supply-demand imbalance, the shortage of DDR3 production capacity has become even more severe.

According to a report from the Economic Daily News, with leading manufacturers like Samsung exiting DDR3 production, while demand for DDR3 from AI and edge computing devices continuing to increase, the storage capacity per single device is rising sharply. This is expected to drive a rebound in DDR3 prices, potentially benefiting related Taiwanese manufacturers such as Winbond, Elite Semiconductor Microelectronics Technology (ESMT), and Etron.

In response to the shift of operational focus to high-bandwidth memory (HBM) and DDR5, the world’s top three memory manufacturers are gradually phasing out the DDR3 market.

Reportedly, Samsung has informed customers that it will cease DDR3 production by the end of the second quarter. SK Hynix had already converted its DDR3 production at its Wuxi plant in China to DDR4 by the end of last year. Meanwhile, Micron has significantly reduced its DDR3 supply to expand its DDR5 and HBM production capacity.

As per industry sources cited in the same report, it’s said that as the reduction in production by major DRAM manufacturers continues to take effect, it has driven standard DRAM prices up from the second half of 2023 to the present, with further increases expected.

Thus, prices for niche memory like DDR3 tend to lag behind standard DRAM by one to two quarters. For Taiwanese manufacturers such as Winbond, ESMT, and Etron, which focus on DDR3, the benefits of DDR3 price increases will gradually become apparent this quarter and next.

The industry sources cited by the same report also point out that DDR3 applications remain quite widespread. For example, WiFi 6 devices predominantly uses DDR3, and the next generation, WiFi 7 devices, will still primarily use DDR3/DDR4. Additionally, edge computing devices would continue to adopt DDR3. With supply significantly decreasing while demand remaining strong, DDR3 prices are expected to continue their upward trend.

Read more

(Photo credit: Samsung)

Please note that this article cites information from Economic Daily News.

2024-06-12

[News] Samsung Considers Hybrid Bonding a Must for 16-stack HBM

According to the latest report by TheElec, though Samsung has been using thermal compression (TC) bonding until its 12-stack HBM, the company now confirms its belief that hybrid bonding is necessary for manufacturing 16-stack HBM.

Regarding its future HBM roadmap, Samsung reportedly plans to produce its HBM4 sample in 2025, which will mostly be 16 stacks, with mass production slated for 2026, the report noted. According to TheElec, earlier in April, Samsung used hybrid bonding equipment from its subsidiary, Semes, to produce a 16-stack HBM sample, of which it indicated to operate normally.

Citing information Samsung revealed during the 2024 IEEE 74th Electronic Components and Technology Conference last month, TheElec learned that Samsung considered hybrid bonding essential for HBM with 16 stacks and above.

According to the report, Samsung has been using thermal compression (TC) bonding until its 12-stack HBM. However, now it emphasized on hybrid bonding’s ability to reduce height, which would be indispensable for 16-stack HBM. By further narrowing the gap between chips, 17 chips (one base die and 16 core dies) can be fitted within a 775-micrometer form factor.

According to an earlier report from TechNews, Samsung and Micron use TC-NCF technology (thermal compression with non-conductive film) on HBM production, which requires high temperatures and high pressure to solidify materials before melting them, followed by cleaning. The industry has relied on traditional copper micro bumps as the interconnect scheme for packages, while their sizes pose challenges when trying to allow more chips to be stacked at a lower height.

Samsung stated that though making the core die as thin as possible or reducing the bump pitch could help, these methods have reached their limits. Sources cited by the Elec mentioned that it is very challenging to make the core die thinner than 30 micrometers. Also, using bumps to connect the chips has limitations due to the volume of the bumps. Thus, hybrid bonding technology may emerge as a promising solution.

While the current technology uses micro bump materials to connect DRAM modules, hybrid bonding, which could stack chips veritically by using through-silicon-via (TSV), can eliminate the need for micro bumps, significantly reducing chip thickness.

On the other hand, according to another report by Business Korea, SK hynix has shown its confidence in the HBM produced with Mass Reflow-Molded Underfill (MR-MUF) technology. MR-MUF technology attaches semiconductor chips to circuits, using EMC (liquid epoxy molding compound) to fill gaps between chips or between chips and bumps during stacking.

SK hynix reportedly plans to begin mass production of 16-layer HBM4 memory in 2026, and the memory heavyweight is currently researching hybrid bonding and MR-MUF for HBM4, but yield rates are not yet high, the report said.

Read more

(Photo credit: Samsung)

Please note that this article cites information from TheElec and Business Korea.

 

2024-06-07

[News] The HBM4 Battle Begins! Memory Stacking Challenges Remain, Hybrid Bonding as the Key Breakthrough

According to a report from TechNews, South Korean memory giant SK Hynix is participating in COMPUTEX 2024 for the first time, showcasing the latest HBM3e memory and MR-MUF technology (Mass Re-flow Molded Underfill), and revealing that hybrid bonding will play a crucial role in chip stacking.

MR-MUF technology attaches semiconductor chips to circuits, using EMC (liquid epoxy molding compound) to fill gaps between chips or between chips and bumps during stacking. Currently, MR-MUF technology enables tighter chip stacking, improving heat dissipation performance by 10%, energy efficiency by 10%, achieving a product capacity of 36GB, and allowing for the stacking of up to 12 layers.

In contrast, competitors like Samsung and Micron use TC-NCF technology (thermal compression with non-conductive film), which requires high temperatures and high pressure to solidify materials before melting them, followed by cleaning. This process involves more than 2-3 steps, whereas MR-MUF completes the process in one step without needing cleaning. As per SK Hynix, compared to NCF, MR-MUF has approximately twice the thermal conductivity, significantly impacting process speed and yield.

As the number of stacking layers increases, the HBM package thickness is limited to 775 micrometers (μm). Therefore, memory manufacturers must consider how to stack more layers within a certain height, which poses a significant challenge to current packaging technology. Hybrid bonding is likely to become one of the solutions.

The current technology uses micro bump materials to connect DRAM modules, but hybrid bonding can eliminate the need for micro bumps, significantly reducing chip thickness.

SK Hynix has revealed that in future chip stacking, bumps will be eliminated and special materials will be used to fill and connect the chips. This material, similar to a liquid or glue, will provide both heat dissipation and chip protection, resulting in a thinner overall chip stack.

SK Hynix plans to begin mass production of 16-layer HBM4 memory in 2026, using hybrid bonding to stack more DRAM layers. Kim Gwi-wook, head of SK Hynix’s advanced HBM technology team, noted that they are currently researching hybrid bonding and MR-MUF for HBM4, but yield rates are not yet high. If customers require products with more than 20 layers, due to thickness limitations, new processes might be necessary. However, at COMPUTEX, SK Hynix expressed optimism that hybrid bonding technology could potentially allow stacking of more than 20 layers without exceeding 775 micrometers.

Per a report from Korean media Maeil Business Newspaper, HBM4E is expected to be a 16-20 layer product, potentially debuting in 2028. SK Hynix plans to apply 10nm-class 1c DRAM in HBM4E for the first time, significantly increasing memory capacity.

Read more

(Photo credit: SK Hynix)

Please note that this article cites information from TechNews and the Financial Times.

2024-06-06

[News] New Standard for DDR6 Memory to Come out Soon

JEDEC (the Solid State Technology Association) recently confirmed that the long-used SO-DIMM and DIMM memory standards will be replaced by CAMM2 for DDR6 (LPDDR6 included).

According to a report from WeChat account DRAMeXchange, the minimum frequency for DDR6 memory is 8800MHz, which can be increased to 17.6GHz, with a theoretical maximum of up to 21GHz, far surpassing that of DDR4 and DDR5 memory. CAMM2 is a brand new memory standard that also supports DDR6 standard memory, making it suitable for large PC devices like desktop PC. JEDEC expects to complete the preliminary draft of the DDR6 memory standard within this year, with the official version 1.0 expected by 2Q25 at the earliest, and specific products likely coming in 4Q25 or in 2026.

LPDDR6 will adopt a new 24-bit wide channel design, with a maximum memory bandwidth of up to 38.4GB/s, significantly higher than the existing LPDDR5 standard. The maximum rate for LPDDR6 can reach 14.4Gbps and the minimum rate is 10.667Gbps, matching the highest rate of LPDDR5x and far exceeding LPDDR5’s 6.7Gbps.

It is learned that a true CAMM2-standard LPDDR6, with a 32GB specification for example, costs about USD 500, which is five times the price of LPDDR5 (SO-DIMM/DIMM) memory.

Considering market adoption, the industry believes that the new CAMM2 standard adopted by DDR6 requires large-scale replacement of existing production equipment, which will bring about a new cost structure. Meanwhile, the evolution of new standards in the existing market will face high cost issue, which will restrict the large-scale adoption of DDR6 or LPDDR6.

Currently, upstream manufacturers like Samsung, SK Hynix, and Micron already have some memory products supporting the CAMM2 standard. Among downstream brand manufacturers, Lenovo and Dell also follow up and Dell reportedly has used CAMM2 memory boards in its enterprise product line in 2023.

Read more

(Photo credit: Samsung)

Please note that this article cites information from WeChat account DRAMeXchange.

2024-06-03

[News] Heated Competition Driven by the Booming AI Market: A Quick Glance at HBM Giants’ Latest Moves, and What’s Next

To capture the booming demand of AI processors, memory heavyweights have been aggressively expanding HBM (High Bandwidth Memory) capacity, as well as striving to improve its yield and competitiveness. The latest development would be Micron’s reported new plant in Hiroshima Prefecture, Japan.

The fab, targeting to produce chips and HBM as early as 2027, is reported to manufacture DRAM with the most advanced “1γ” (gamma; 11-12 nanometers) process, using extreme ultraviolet (EUV) lithography equipment in the meantime.

Why is HBM such a hot topic, and why is it so important?

HBM: Solution to High Performance Computing; Perfectly Fitted for AI Chips

By applying 3D stacking technology, which enables multiple layers of chips to be stacked on top of each other, HBM’s TSVs (through-silicon vias) process allows for more memory chips to be packed into a smaller space, thus shortening the distance data needs to travel. This makes HBM perfectly fitted to high-performance computing applications, which requires fast data speed. Additionally, replacing GDDR SDRAM or DDR SDRAM with HBM will help control energy consumption.

Thus, it would not be surprising that AMD, the GPU heavyweight, collaborated with memory leader SK hynix to develop HBM in 2013. In 2015, AMD launched the world’s first high-end consumer GPU with HBM, named Fiji. While in 2016, NVIDIA introduced P100, its first AI server GPU with HBM.

Entering the Era of HBM3e

Years after the first AI server GPU with HBM was launched, NVIDIA has now incorporated HBM3e (the 5th generation HBM) in its Blackwell B100/ Hopper H200 models. The GPU giant’s GB200 and B100, which will also adopt HBM3e, are on the way, expected to be launched in 2H24.

The current HBM3 supply for NVIDIA’s H100 is primarily met by SK hynix. In March, it has reportedly started mass production of HBM3e, and secured the order to NVIDIA. In May, yield details regarding HBM3e have been revealed for the first time. According to Financial Times, SK hynix has achieved the target yield of nearly 80%.

On the other hand, Samsung made it into NVIDIA’s supply chain with its 1Znm HBM3 products in late 2023, while received AMD MI300 certification by 1Q24. In March, Korean media Alphabiz reported that Samsung may exclusively supply its 12-layer HBM3e to NVIDIA as early as September. However, rumors have it that it failed the test with NVIDIA, though Samsung denied the claims, noting that testing proceeds smoothly and as planned.

According to Korea Joongang Daily, Micron has roused itself to catch up in the heated competition of HBM3e. Following the mass production in February, it has recently secured an order from NVIDIA for H200.

Regarding the demand, TrendForce notes that HBM3e may become the market mainstream for 2024, which is expected to account for 35% of advanced process wafer input by the end of 2024.

HBM4 Coming Soon? Major Players Gear up for Rising Demand

As for the higher-spec HBM4, TrendForce expects its potential launch in 2026. With the push for higher computational performance, HBM4 is set to expand from the current 12-layer (12hi) to 16-layer (16hi) stacks. HBM4 12hi products are set for a 2026 launch, with 16hi in 2027.

The Big Three have all revealed product roadmaps for HBM4. SK hynix, according to reports from Wccftech and TheElec, stated to commence large-scale production of HBM4 in 2026. The chip will, reportedly, be the first chip from SK hynix made through its 10-nm class Gen 6 (1c) DRAM.

As the current market leader in HBM, SK hynix shows its ambition in capacity expansion as well as industrial collaboration. According to Nikkei News, it is considering expanding the investment to Japan and the US to increase HBM production and meet customer demand.

In April, it disclosed details regarding the collaboration with TSMC, of which SK hynix plans to adopt TSMC’s advanced logic process (possibly CoWoS) for HBM4’s base die so additional functionality can be packed into limited space.

Samsung, on the other hand, claimed to introduce HBM4 in 2025, according to Korea Economic Daily. The memory heavyweight stated at CES 2024 that its HBM chip production volume will increase 2.5 times compared to last year and is projected to double again next year. In order to embrace the booming demands, the company spent KRW 10.5 billion to acquire the plant and equipment of Samsung Display located in Tianan City, South Korea, for HBM capacity expansion. It also plans to invest KRW 700 billion to 1 trillion in building new packaging lines.

Meanwhile, Micron anticipates launching 12-layer and 16-layer HBM4 with capacities of 36GB to 48GB between 2026 and 2027. After 2028, HBM4e will be introduced, pushing the maximum bandwidth beyond 2+ TB/s and increasing stack capacity to 48GB to 64GB.

Look back at history. As the market demand for AI chips keeps its momentum, GPU companies tend to diversify their sources, while memory giants vie for their favor by improving yields and product competitiveness.

In the era of HBM3, the supply for NVIDIA’s H100 solution is primarily met by SK hynix at first. Afterwards, Samsung’s entry into NVIDIA’s supply chain with its 1Znm HBM3 products in late 2023, though initially minor, signifies its breakthrough in this segment. This trend of diversifying suppliers may continue in HBM4. Who would be able to claim the lion’s share in the next-gen HBM market? Time will tell sooner or later.

Read more

(Photo credit: Samsung)

  • Page 16
  • 35 page(s)
  • 172 result(s)

Get in touch with us