Taiwan semiconductor


2021-09-06

Revenue of Top 10 OSAT Companies for 2Q21 Reaches US$7.88 Billion Due to Strong Demand and Increased Package/Test Prices, Says TrendForce

Despite the intensifying COVID-19 pandemic that swept Taiwan in 2Q21, the domestic OSAT (outsourced semiconductor assembly and test) industry remained largely intact, according to TrendForce’s latest investigations. Global sales of large-sized TVs were brisk thanks to major sporting events such as the Tokyo Olympics and UEFA Euro 2020. Likewise, the proliferation of WFH and distance learning applications propelled the demand for IT products, while the automotive semiconductor and data center markets also showed upward trajectories. Taking into account the above factors, OSAT companies raised their quotes in response, resulting in a 26.4% YoY increase in the top 10 OSAT companies’ revenue to US$7.88 billion for 2Q21.

TrendForce indicates that, in light of the ongoing global chip shortage and the growing production capacities of foundries/IDMs in the upstream semiconductor supply chain, OSAT companies gradually increased their CAPEX and expanded their fabs and equipment in order to meet the persistently growing client demand. However, the OSAT industry still faces an uncertain future in 2H21 due to the Delta variant’s global surge and the health crisis taking place in Southeast Asia, home to a significant number of OSAT facilities.

Regarding the performances of individual OSAT companies in 2Q21, market leader ASE and Amkor each recorded revenues of US$1.86 billion and US$1.41 billion, which represented YoY growths of 35.1% and 19.9%, respectively, for the quarter. Both companies benefitted from strong demand for 5G smartphones, notebook computers, automotive chips, and networking chips. In particular, ASE allocated some of its capacities to KYEC (which suffered a drop in its IC testing capacity due to the pandemic) and therefore experienced a surge in its revenue. Also posting a revenue growth in 2Q21 was Amkor, which took second place on the top 10 list owing to the high demand for automotive chips, HPC chips, and 5G handsets released by Apple and other smartphone brands.

SPIL’s revenue for 2Q21 reached US$931 million, a modest 2.3% YoY increase. The company’s relatively muted growth can be attributed to the fact that smartphone IC packaging demand from Huawei, one of SPIL’s major clients, had plunged, while other smartphone brands did not place orders sufficient for making up for this plunge. As previously mentioned, some of KYEC’s testing capacities were adversely affected by the COVID-19 pandemic, resulting in a 6.8% YoY increase in KYEC’s revenue to a mere US$274 million for 2Q21. PTI gradually recovered from difficulties resulting from the closure of its Japanese and Singaporean subsidiaries. For 2Q21, PTI’s revenue reached US$742 million, a 14.3% YoY increase.

Regarding Chinese OSAT companies, JCET and Hua Tian both expanded their capacities in order to meet the massive demand from the domestic 5G telecom, base station, consumer electronics, and automotive markets. While JCET and Hua Tian continue to operate in accordance with China’s goal of achieving domestic semiconductor substitutes, the two companies’ revenues for 2Q21 reached US$1.1 billion and US$467 million, which represented YoY growths of 25% and 64.7%, respectively. It should be pointed out that TFME also benefitted from the aforementioned market demand. TFME’s revenue reached US$591 million, a 68.3% YoY increase, which was the highest increase among the top 10 OSAT companies in 2Q21. TFME’s impressive growth took place primarily because the company is the main OSAT provider for AMD. As AMD captured some of Intel’s market share, both AMD and, by extension, TFME, experienced a resultant revenue growth.

Finally, ChipMOS and Chipbond, which specialize in panel driver IC packaging and testing, benefitted from major sporting events such as the Tokyo Olympics and UEFA Euro 2020. Given the skyrocketing demand for display panels, IC testing demand for driver ICs, including TDDI and DDI, also underwent a corresponding rise. Notably, due to a shortage of packaging materials, ChipMOS raised the price of its packaging services for memory products and subsequently registered a spike in both revenue and gross profits. While both companies’ revenues reached US$251 million, ChipMOS and Chipbond each registered revenue growths of 38.4% YoY and 49.6% YoY, respectively.

For more information on reports and market data from TrendForce’s Department of Semiconductor Research, please click here, or email Ms. Latte Chung from the Sales Department at lattechung@trendforce.com

2021-09-03

Driven in Part by Demand for New Energy Vehicles, GaN Power Devices Market Projected to Grow at 78% CAGR Through 2025, Says TrendForce

Demand for telecom base stations, converters, and charging stations has seen considerable growth this year as a result of ongoing developments in 5G telecommunication, consumer electronics, industrial energy conversion, and new energy vehicles (NEV), according to TrendForce’s latest investigations. While this demand generated a corresponding surge in demand for components and devices powered by third-generation semiconductors GaN and SiC, the GaN power devices market is expected to undergo the highest magnitude of growth. TrendForce expects GaN power devices revenue for 2021 to reach US$83 million, an impressive 73% YoY increase.

According to TrendForce’s investigations, GaN power devices are primarily used in consumer electronics; annual GaN power devices revenue is expected to grow at a 78% CAGR and reach US$850 million in 2025. Regarding applications, consumer electronics, NEVs, and telecom/data centers, in order, comprise the three largest sources of GaN power devices consumption, at 60%, 20%, and 15%, respectively. TrendForce finds that about 10 smartphone OEMs have released more than 18 models of smartphones equipped with fast charging capability, while notebook manufacturers are also indicating a willingness to adopt fast charging for notebook computers.

Annual SiC revenue, on the other hand, is expected to grow at a 38% CAGR and reach US$3.39 billion in 2025, with NEVs, solar power generation/storage, and charging stations representing the top three largest source of SiC power device consumption, at 61%, 13%, and 9%, respectively. For the NEV industry, in particular, SiC power devices are most widely used in powertrain inverters, OBCs (on board chargers), and DC-DC converters.

Major IDMs from Europe, the US, and Japan still control the vast majority of substrate supply

Due to their relative difficulty in epitaxial growth and the fact that the industry is moving from 6-inch towards 8-inch substrates as the mainstream, third-generation semiconductor GaN and SiC substrates are 5-20 times more expensive to manufacture compared to traditional 8-inch and 12-inch Si substrates. It should be noted that most substrate materials are, at the moment, controlled by such major IDMs as US-based Cree and II-VI, Japan-based Rohm, and Europe-based STMicroelectronics. In response to this oligopoly, certain Chinese suppliers, including SICC and Tankeblue, have successively entered the substrate market with the support of China’s 14th five-year plan. Their participation will likely accelerate China’s goal of semiconductor self-sufficiency.

Although substrate suppliers from Europe, the US, and Japan enjoy an early presence in the market and possess relatively mature process technologies, TrendForce believes that Taiwanese suppliers still hold certain competitive advantages. For instance, not only do Taiwanese companies have vast experiences in silicon development, but Taiwan is also home to a comprehensive upstream/downstream silicon supply chain. In addition to these aforementioned advantages, Taiwan is further aided by policies that promote domestic material supply, design, and technological development. Taiwan is therefore well on its way to achieving its goal of becoming a center of advanced semiconductor fabrication that derives its strength from a gradually maturing front-end substrate and epitaxy industry chain, as well as mid- and back-end competencies in chip design, manufacturing, and packaging. Currently, two major strategic alliances, led by Hermes-Epitek (with subsidiaries EPI and EPISIL), and SAS (with subsidiaries GW, AWSC, CWT, and ATC) are attempting to maximize their efforts in Taiwan’s lacking substrate industry. Furthermore, TAISIC, jointly funded by KENMEC and TAINERGY, has submitted 4-inch SiC substrates for qualification and is actively investing in 6-inch SiC substrate R&D.

For more information on reports and market data from TrendForce’s Department of Semiconductor Research, please click here, or email Ms. Latte Chung from the Sales Department at lattechung@trendforce.com

2021-07-07

For Importation of US Semiconductor Equipment into China, Slow Progress Is Good Progress

The inclusion of certain Chinese semiconductor companies on the US Commerce Department’s Entity List in the past few years has created repercussions throughout industries and markets, with the semiconductor industry coming under heavy scrutiny by both China and the US. After SMIC was hit with a string of sanctions last year, including the EAR and the NS-CCMC List, recent rumors of further US actions on China are now once again making the rounds on social media platforms.

In particular, there have been rumors saying that the US has prohibited TSMC and UMC from importing 28nm process technology equipment into China for their fabs there. Conversely, some industry insiders from China point out that, although the US did not impose such prohibition, the export approval process for the aforementioned equipment has been conspicuously lengthy.

In reality, the Department of Commerce has levied procurement restrictions on SMIC specifically, while foundries unspecified on the Entity List have not been explicitly barred from importing semiconductor equipment for use in their China-based fabs. Although some are noting that the approval processes for semiconductor equipment exported to fabs located in China have been unusually lengthy recently, these processes are not specifically aimed at equipment for the 28nm process technology.

Instead, they apply to all semiconductor equipment exported from the US to China. It should also be noted that the approval processes for some exported equipment are currently progressing well, and foundries have already taken the extended lead times into account, according to TrendForce’s latest investigations. Hence, the lengthy approval processes have not been observed to have any negative impact on the semiconductor industry at the moment.

(Cover image source: ASML

2021-07-01

With Advanced Packaging Market Share Now Over 40%, Who Is the Global Leader in Technological Competence and Human Capital?

The rise of such products as automotive, industrial, telecom, and networking chips in recent years has resulted in continued advancements in packaging and testing technologies, and the market revenue of these technologies has seen a corresponding rise as well. Demand for advanced packaging has been relatively strong thanks to high demand for 5G smartphones, consumer electronics, and high-performance processors.

In particular, the mainstream development of advanced packaging and testing is currently concentrated on three major fields: HPC chip packaging(2.5D/3D), FOPLP(fan out panel level packaging), and SiP(system in package). Some of the other factors driving forward the technological development of advanced packaging also include improvements in end product functions, advancements in transistor gate sizes, reduction in advanced packaging L/S, and migration of chip interconnect technology from micro-bumping to hybrid bond.

According to TrendForce’s investigations, the advanced packaging market last year reached a revenue of US$31.037 billion in 2020(which was a 13% increase YoY)and accounted for 45.8% of the total packaging market. At the moment, most packaging and testing companies have successively entered the advanced packaging market, with Flip Chip applications accounting for the majority of applications across smartphone AP, WiFi chips, entry-level processors, and high-end PMICs. Flip Chip applications make up more than 80% of the total advanced packaging revenue.

In spite of continued growth, advanced packaging will unlikely overtake traditional packaging in terms of market share within 5-10 years

In spite of the multitude of companies that are eager to enter the advanced packaging industry, not all of them possess the technological competence to progress in R&D, thus making acquisition the fastest path to advanced packaging success. With regards to technological competence, foundries and IDMs are the likeliest candidates to enter the industry, as they already possess ample experience in chip development.

At the moment, TSMC, Intel, and Samsung are the most well-equipped to do so, respectively. With regards to outsourced operations, Taiwanese companies such as ASE, SPIL, and PTI lead the industry in terms of packaging technologies, while U.S.-based Amkor is able to compete for neck-and-neck with ASE. Although these aforementioned companies are not specialists in chip fabrication, they have an extremely strong grasp of the downstream assembly ecosystem, hence their superiority in advanced packaging.

On the other hand, thanks to China’s Big Fund, the trinity of Chinese packaging and testing operators(JCET, TFME, and Hua Tian)were able to acquire major global players, including STATS ChipPac, AMD-SUZ, and Malaysia-based Unisem, respectively, during the 2014-2019 period.

Hence, not only have the Chinese trio been able to raise their market shares and rankings in the global packaging and testing market, but they have also been able to acquire certain competencies in advanced packaging technologies.

The current market would seem to suggest that advanced packaging has been gradually cannibalizing the market share of traditional packaging. However, as applications including home appliances and automotive electronics still require traditional packaging, TrendForce believes that only after 5-10 years will advanced packaging overtake traditional packaging in terms of market share.

(Cover image source: TSMC

2021-06-28

What Is the Global Significance of the Taiwanese Semiconductor Industry’s Advanced Processes?

As UMC and GlobalFoundries successively end their respective developments of advanced processes, the advanced process market has now become an oligopoly, with TSMC and Samsung as the only remaining suppliers (excluding SMIC, which is currently affected by geopolitical tensions between China and the US). According to TrendForce’s latest investigations, TSMC holds a 70% market share in advanced processes below – and including – the 1Xnm node, while Samsung’s market share is about 30%.

As electronic products demand faster data transmission speeds and better performance in response to IoT and 5G applications, the chips contained in these products also need to shrink in size and consume less power. Hence, process technologies need to evolve in order to enable the production of increasingly advanced chips. In this light, suppliers of such chips as smartphone AP, CPU, and GPU primarily rely on Taiwan for its semiconductor industry’s advanced process technologies.

Why is Taiwan able to hold key manufacturing competencies, market shares, and unsurpassed technologies in the global foundry industry?

After TSMC pioneered its pure-play foundry services more than 30 years ago, UMC also subsequently transitioned to a foundry business model. However, the build-out and maintenance of wafer fabs require enormous human resources, capital expenditures, and environmental support, all of which have been skyrocketing since the industry progressed below the 40nm node into the EUV era. Factors including governmental support, human resource development, utility services, and long-term amortization and depreciation are all indispensable for foundries to keep up their fab operations. TrendForce’s findings indicate that Taiwan possesses about 50% of the global foundry capacity, and this figure will likely continue growing due to the persistent demand for advanced processes.

Taiwanese foundries led by TSMC and UMC operate based on a pure-play foundry model, which means they do not compete with their clients outside of foundry operations. Foundries are able to maximize the profitability of the semiconductor ecosystem in Taiwan thanks to Taiwan’s comprehensive PC, ICT, and consumer electronics industries.

In addition, not only are they able to deliver PPA(performance, power, and area) advantages to their clients through technology scaling and node shrinking, they are also unsurpassed in their comprehensive silicon IP cores and longstanding product development services. Other competing foundries are unlikely to make breakthroughs in these fields and catch up to Taiwanese foundries in the short run.

On the whole, the Taiwanese foundry industry is able to maintain its leadership thanks to competencies in human capital, client strategies, process technologies, capital intensify, economies of scale, and superior production capacities.

Furthermore, not only do advancements in semiconductor fabrication technology require developmental efforts from foundries, but they also need support throughout the entire supply chain, including upstream wafer suppliers and downstream client feedbacks, both of which can serve to eliminate yield detractors and raise yield rates. Therefore, the Taiwanese semiconductor industry derives its advantage from foundries(TSMC, UMC, PSMC, and VIS), as well as from the cross-industrial support across silicon wafer suppliers(SAS and GlobalWafers), fabless IC design clients, and packaging and testing operators(ASE, etc.)

(Cover image source: TSMC

  • Page 4
  • 5 page(s)
  • 21 result(s)

Get in touch with us