TrendForce


2021-06-08

Memory Prices Likely to Continue Rising in 3Q21 as Suppliers Keep a Low Level of Inventory, Says TrendForce

Memory suppliers are currently carrying a relatively low level of inventory because of aggressive stock-up activities of clients across different application segments in 1H21, according to TrendForce’s latest investigations. More specifically, inventories of DRAM suppliers and NAND Flash suppliers are averaging 3-4 weeks and 4-5 weeks, respectively. The overall procurement of server memory products is expected to intensify in 3Q21, so memory suppliers do not see the necessity in lowering quotes to drive sales. TrendForce forecasts that DRAM prices will rise further by 3-8% QoQ for 3Q21. On the other hand, thanks to the growing demand for enterprise SSDs and NAND Flash wafers, TrendForce has also corrected up the magnitude of the QoQ increase in NAND Flash prices for 3Q21 to 5-10% (compared with the previous projection of 3-8%).

High inventory may pose potential risk for smartphone brands in 2H21 due to decreased smartphone production targets

Under the market spotlight are smartphone brands and notebook manufacturers, which drastically differ in their inventory levels. Regarding the smartphone market, TrendForce has already lowered the YoY growth rate of the global total smartphone production in 2021 to 8.5% from the previous projection of 9.4% as the second wave of the COVID-19 pandemic takes place across India. Presently, smartphone brands are carrying 8-10 weeks of inventory on average for DRAM and NAND Flash. Two newly emerged factors are generating some concerns about the high level of inventory. First, Chinese brands have lowered their production targets and begun to adjust inventories in order to address the issue of component gaps. Second, Southeast Asia is bracing for a resurgence of COVID-19 outbreaks that could disrupt smartphone production and weaken consumer demand.

PC OEMs are holding up to 10 weeks’ worth of DRAM inventory on average; price hike of PC DRAM in 2H21 will likely be limited as a result

Regarding the notebook market, on the other hand, PC OEMs are currently carrying about 8-10 weeks’ worth of DRAM inventory on average, with some PC OEMs having an even higher inventory level, primarily because the stay-at-home economy this year will continue to propel the demand for notebook computers, about 238 million units of which are expected to be produced this year, a 14.3% increase YoY. Furthermore, in view of the shortage of components in the upstream supply chain, including audio CODECs, analog ICs, power ICs, MCUs, and LED drivers, PC OEMs are anticipating that DRAM will be in similar shortage as well, thus potentially leading to an inability to manufacture notebooks. In response, PC OEMs are therefore prompted to expand their DRAM procurement in 1H21. On the NAND Flash front, the persistent shortage of NAND Flash controller ICs means that PC OEMs generally carry about 4-5 weeks’ worth of NAND Flash inventory on average, which is relatively lower than their DRAM inventory.

TrendForce forecasts that Chinese smartphone brands will slow down their procurement of mobile DRAM and NAND Flash solutions during 2H21. However, contract prices of memory products on the whole will unlikely experience a general decline in the second half of the year because demand remains fairly robust in other application segments. On the PC and NB front, changes in the fulfillment rates of components that are in shortage will become the key determinant of how PC OEMs evaluate their inventory of well-stocked components. It should be pointed out that, as PC OEMs have been maintaining a relatively high inventory of DRAM, the increase in PC DRAM prices in 2H21 will be markedly muted as a result.

For more information on reports and market data from TrendForce’s Department of Semiconductor Research, please click here, or email Ms. Latte Chung from the Sales Department at lattechung@trendforce.com

2021-06-07

Instant Depreciation for New Cars? OTA Update Means Cars Are No Longer Negative Assets for Drivers

As software and hardware technologies improve in the automotive industry, cars now have an increasing number of smart features in response to the demand for user friendliness; for instance, the Car2Home ecosystem was created as a natural extension of V2X (vehicle-to-everything) technology. Advances in automotive systems and technologies, however, do little to assuage prospective car buyers’ fears of instant depreciation and maintenance fees, which are both justified and frequently parroted by existing owners.

Recent years, however, have seen the emergence of a new technology known as OTA (over-the-air) that can at least address car buyers’ maintenance-related worries. Automakers can fix software issues in the car with OTA updates, thus saving the driver the time and effort it takes to perform a factory maintenance. Simply put, OTA is a cloud-based service that allows automakers to perform a host of actions, including software/firmware updates, OS upgrade, issue fixing, and security patches, through a cloud-network-car connection.

As such, OTA technologies are highly dependent on data encryption, decryption, and transmission, meaning OTA services involve not only software and cloud services vendors, but also cybersecurity companies as well. According to TrendForce’s investigations, about 72% of new cars sold in 2025 will be OTA-enabled vehicles thanks to advancements in V2X, automotive electronic/electrical architectures, and intra-vehicle communications.

OTA pioneer Tesla kicked off its OTA strategies in 2012

Tesla is perhaps the impetus responsible for the surge in OTA viability in the automotive industry. Elon Musk believes that cars should be appreciated, as opposed to depreciating, assets for the consumer. As part of that belief, all Tesla models are capable of OTA updates of software and firmware, reflected in Tesla’s revenues from “service and other”, which saw yearly growths from 2016 to 2020 (Tesla’s 2020 earnings from “service and other” alone surpassed US$2.4 billion). Therefore, Tesla’s sales volume will remain the key to the market size and penetration rate of OTA technology.

Other automakers, such as BMW, Mercedes-Benz, GM, Ford, Toyota, and Volkswagen, also began rolling out OTA updates in their models from 2015 to 2020, although it wasn’t until the year 2020 did most of these companies perform OTA updates on any appreciable scale. Furthermore, most OTA updates were software updates as opposed to firmware updates (for ADAS and powertrain functionalities), since issuing firmware OTA updates still remains a major issue for automakers at the moment.

TrendForce also indicates that, should automakers wish to improve automotive functionalities with OTA updates, they would need to completely overhaul their cars’ electronic and electrical architectures. In this light, one of the prerequisites of performing functional OTA updates is the availability of compatible hardware in cars.

For instance, in order to activate LiDAR functionality, automakers must first equip a car with LiDAR hardware. Once self-driving technology matures to the point when it is deemed appropriate to be enabled on a given car, then automakers can activate the necessary LiDAR functionality with OTA updates.

Of course, all of this hinges on whether automakers are willing to bear the cost of preemptively equipping their cars with the necessary hardware, as well as whether they have any faith in the success of new services/functions to be activated by OTA in the future. Most importantly, however, if consumers were uninterested in these services and functions, then automakers would have no way of recouping their preemptive investments in the aforementioned hardware.

On the whole, despite most automakers’ planned to roll out the capability of OTA updates to their vehicles, they still face bottlenecks in performing OTA updates safely and providing useful upgrades for users. Only by overcoming these hurdles will automakers effectively improve the driving experience and convince car owners as well as prospective buyers that OTA is a worthy investment.

(Cover imgae source: Pixabay)

2021-06-03

Enterprise SSD Prices Projected to Increase by More Than 10% QoQ in 3Q21 Due to Growing Procurement Capacity, Says TrendForce

Enterprise SSD procurement has been rising on the back of growing server shipments since 2Q21, according to TrendForce’s latest investigations. In particular, the share of 8TB products in shipments of SSDs to data centers has shown the most noticeable growth, which is expected to persist through 3Q21. However, certain SSD components and parts may be in shortage due to insufficient foundry capacity. TrendForce is therefore revising the QoQ hikes in contract prices of enterprise SSDs for 3Q21 to 10-15% from the previous projection of 5-10%.

TrendForce further indicates that the high demand for enterprise SSDs in 3Q21 is attributed to several factors. First, North American cloud service providers (hyperscalers) have pretty much completed their inventory adjustments and now continue to expand their storage capacity. Second, the flow of incoming orders to traditional server brands is getting stronger over the quarters as government agencies and SMBs increase their budgets for IT infrastructure. Third, Intel and AMD are ramping up production for server CPUs based on their respective new processor platforms. Following the adoption of new CPUs, the overall demand for enterprise SSDs has also shifted to higher-density products because clients want to upgrade their computing power and storage capacity. Specifically, demand is mainly trending toward 4/8TB SSDs since raising NAND Flash density can lower the cost of SSD deployment.

Supply leader Samsung will likely gain control over enterprise SSD pricing in the market

Regarding the supply end, Samsung has a higher flexibility in supplying SSDs compared to the other suppliers because it has a higher share of in-house components for its storage products. Therefore, in view of the possible shortage in certain SSD components, Samsung will likely be able to further expand its market share for enterprise SSDs. Furthermore, Samsung’s products are expected to account for more than 50% of enterprise SSDs (in terms of bits) shipped to data centers in North America in 3Q21. This dominance will likely further Samsung’s ability to dictate market prices going forward.

Intel, on the other hand, has been constrained in its ability to manufacture enterprise SSDs due to a shortage of PMICs. In addition, Intel has mostly been fulfilling orders for QLC products. As a result, Intel’s market share may potentially decrease in the TLC-dominant enterprise SSD sector. Regarding other suppliers including Kioxia and SK Hynix, although they have been able to raise their market shares due to gradual adoption of their products by clients, they are unlikely to catch up to Samsung for the time being.

On the PC client SSD front, at the moment, demand for notebook computers has remained strong, while the supply of SSD controller IC is still relatively tight. TrendForce therefore forecasts a slight 3-8% QoQ increase in client SSD contract prices for 3Q21. Regardless, suppliers will not slow down their process migrations. Starting from 3Q21, 176L PC client SSDs will be available on the market, with a corresponding increase in supply bits in the upstream SSD supply chain.

For more information on reports and market data from TrendForce’s Department of Semiconductor Research, please click here, or email Ms. Latte Chung from the Sales Department at lattechung@trendforce.com

2021-06-02

MCO 3.0 Lockdown in Malaysia, Hotspot for Packaging/Testing and Passive Component Manufacturing, Projected to Have No Effect on Semiconductor Companies, Says TrendForce


National governments in Southeast Asian countries, including Thailand, Vietnam, and Malaysia, have been instituting increasingly stringent pandemic control measures in response to the intensifying COVID-19 pandemic in these countries. Remarkably, these countries are all hotspots in the electronic component supply chain, and Malaysia, home to many semiconductor packaging and testing facilities as well as passive component fabs, has now come under the international spotlight as a result. In particular, Malaysia’s MCO 3.0 (Movement Control Order 3.0) lockdown, which was extended on June 1, specifically excludes the semiconductor industry, as this industry boasts relatively high market revenue. As such, packaging and testing facilities are currently operating normally in Malaysia, according to TrendForce’s latest investigations.

On March 18, 2020, the Malaysian government first implemented similar pandemic control measures, under which only about 50% of private businesses were allowed to operate. The semiconductor industry and medical services were notably excluded from the restrictions at the time, given the former’s high revenue and the latter’s critical importance during emergencies. Despite the heightened lockdown of the MCO 3.0, under which only certain essential economic activities are allowed to function, some aspects of the MCO 3.0’s restrictions are relatively more lenient, as this policy specifies only 40% of private business employees must adopt WFH. Incidentally, as previously mentioned, the MCO 3.0 does not apply to the semiconductor industry.

As manufacturing operations and lead times of passive components become constrained, end clients’ procurement activities remain uncertain in 2H21

On the other hand, TrendForce indicates that the passive component market, which is also a key industry in Malaysia, will likely face supply-side bottlenecks as a result of the MCO 3.0, affecting such suppliers as Taiyo Yuden, Walsin Technology, NDK, and Epson. Under the latest restrictions, product lead times in the passive component supply chain, along with the state of the transportation industry (which determines shipping and delivery schedules of passive components), will become key determinants of whether client orders can be fulfilled on time.

In addition, brands in Europe and North America will begin adjust their orders for late-3Q21 in June and July. Notebook brands including Dell and HP are not only expected to maintain their orders for 2H21, but also taking measures to ensure a steady supply of IC components, while Apple will begin procuring components for its upcoming iPhone 13 from the passive component supply chain in July. Although these orders are expected to provide upward momentum for the passive component market in 2H21, the resurgence of the pandemic in Southeast Asia, as well as whether the shortage of semiconductor components will be alleviated going forward, will affect clients’ procurement activities for MLCC (multilayer ceramic capacitors) in 2H21.

On the whole, although the packaging and testing operations of major IDMs (Intel, Infineon, and Texas Instruments) and OSAT operators (ASE, Amkor, TFME, and Hua Tian) in Malaysia remain unaffected for the time being, TrendForce believes that the MCO 3.0 will likely have an impact on the supply and demand of the global passive component market in 2H21.

For more information on reports and market data from TrendForce’s Department of Semiconductor Research, please click here, or email Ms. Latte Chung from the Sales Department at lattechung@trendforce.com

2021-06-01

Monitor Panel Shipment for 1Q21 Declines by 8.6% QoQ to 39.9 Million Units Due to IC Shortage and Samsung’s Exit, Says TrendForce

Owing to the stay-at-home economy brought about by the onset of the COVID-19 pandemic, demand for IT products has been sky-high since 2Q20. However, monitor panel shipment for 1Q21 declined by 8.6% QoQ to 39.9 million units due to the shortage of components such as ICs in the upstream supply chain, as well as SDC’s (Samsung Display Co.) decision to shutter its monitor panel manufacturing operations, according to TrendForce’s latest investigations.

Regarding the two aforementioned factors constraining the shipment performances of monitor panel suppliers, TrendForce indicates that SDC will exit the monitor LCD panel manufacturing business after it reaches its shipment target of 1.2 million panels in 1H21. This figure represents a staggering 93.8% decline compared to the 19.3 million units of LCD panels that SDC shipped throughout last year. Aside from SDC’s decision, the other detractor of monitor panel shipment in 1Q21 was the tight supply of semiconductor production capacity, which resulted in a shortage of such components as ICs and TCON (timing controllers) in the upstream panel supply chain. Panel suppliers were hence constrained in their ability to manufacture panels, thereby leading to a shortage of monitor panels. In addition, since TV and notebook (laptop) panels have higher profit margins compared to monitor panels, panel suppliers generally allocate less of their production capacities for manufacturing monitor panels relative to the other products.

Monitor panel shipment for 2021 is still likely to experience a YoY growth as material shortage becomes alleviated going forward

Nonetheless, as demand for TV and notebook computers gradually slows, and certain semiconductor foundries are expected to expand their production capacities in 2H21, TrendForce believes that panel suppliers will likely in turn allocate more production capacities to clients in the monitor segment in 4Q21. More specifically, the current shortage of components in the upstream supply chain, which has been exerting significant downward pressure on monitor panel shipment, will be gradually alleviated in 2H21. On the demand side, the persistent stay-at-home economy will continue to generate demand for IT products. Monitor brands will therefore ramp up procurement activities for components such as panels in order to maintain a healthy inventory level. In light of influences on the supply side and demand side, TrendForce expects monitor panel shipment for 2021 to reach 169 million units, a 4.2% YoY growth.

For more information on reports and market data from TrendForce’s Department of Display Research, please click here, or email Ms. Vivie Liu from the Sales Department at vivieliu@trendforce.com

  • Page 39
  • 46 page(s)
  • 229 result(s)

Get in touch with us