Articles


2023-08-15

Micro OLED vs. Micro LED: Comparing AR Display Technologies

Apple has unveiled its long-awaited MR device, “Vision Pro,” which provides a clearer perspective on the potential and applications of AR devices. Despite not being as bulky as VR devices, Vision Pro still has a way to go before reaching the ideal form of AR glasses.

Apple’s Vision Pro utilizes Micro OLED technology and can display facial expressions on the outer screen. The industry anticipates that as AR technology evolves, a transition from Micro OLED to the equally next-gen Micro LED could make AR devices lightweight and more like glasses.

However, the question remains: what advantages does Micro LED bring to AR technology? Why did Apple opt for Micro OLED initially? And are there other display technologies suitable for AR applications?

AR devices: Striking a Balance between Ideal and Reality

In reality, achieving the truly ideal AR product might be premature given current technology. Most AR functional products strictly employ video see-through (VST) technology, where cameras capture real-world scenes, and computational and computer graphic techniques combine to display them on opaque screens.

The ideal is optical see-through (OST) technology, where users perceive the real world through a semi-transparent optical combiner in front of their eyes, coupled with projections onto the user’s eyes, merging the real and virtual worlds.

TrendForce discloses that ideal see-through smart glasses must meet three criteria: firstly, the display light engine must be compact, around 1 inch or smaller, to minimize the glasses’ wearing burden. Secondly, in terms of content recognition requirements, the display brightness specifications should reach at least 4,000 nits to ensure resistance to external factors like weather and environment. Lastly, the resolution must be at least 3,000 PPI for clear projected images.

Industry experts note that see-through AR glasses’ main scenarios are outdoors and on the move. These scenarios require consideration of outdoor weather and brightness, particularly as current waveguide lens efficiency is low, around 0.1-1%, causing substantial light loss. Generally, AR display brightness must exceed 1 million, even 10 million nits.

AR Glasses Development: Which Display Technology Holds the Edge?

Mainstream display technologies for AR glasses include PM(Passive Matrix) micro-display technology, AM(Active Matrix) micro-display technology, and scanning display technology.

PM micro-display technology encompasses LCD, LCOS (Liquid Crystal on Silicon), and DLP (Digital Light Processing) technologies, requiring RGB LED or RGB laser light sources. While mature, they tend to have larger light engines compared to other technologies.

AM micro-display technology includes Micro OLED and Micro LED. Micro OLED features self-emission properties but struggles with brightness. Micro LED outperforms Micro OLED in contrast, lifespan, and power efficiency, but integrating RGB remains challenging.

Scanning display technology (LBS) employs RGB lasers and MEMS for scanning imaging but might lead to speckle.

Analysis of Micro OLED, Micro LED, LCOS, and LBS Technologies

  • Micro OLED: Suited for VR/MR devices, but brightness is a limitation

Apple’s Vision Pro uses Micro OLED technology, but its organic light-emitting characteristics result in lower brightness compared to Micro LED, LBS, LCOS, and DLP.

Despite efforts to enhance brightness through different layers, pattern adjustments, and phosphorescent materials, increasing brightness shortens organic material lifespan. Sony remains a key Micro OLED provider, but but recent reports indicate that LGD (LG Display) has joined Apple’s Vision Pro Micro OLED supply chain, potentially boosting production and reducing costs.

  • Micro LED: Strongest contender for AR applications but faces technological challenges

Micro LED excels in PPI, brightness, contrast, and light engine size. However, its technological maturity is a major concern. Micro LED AR glasses predominantly display monochrome images due to colorization barriers. Achieving high resolution requires chip scaling, with Micro LED sizes shrinking to 5um. Challenges include uniform wavelength distribution and external quantum efficiency for red LEDs.

  • LCOS: Mature but high power consumption and low contrast limit development

LCOS is a common AR device display technology with low cost and broad color gamut. Its reflective nature achieves high brightness, up to 40% light utilization, and increased resolution as semiconductor processes refine. However, it suffers from low contrast and requires a polarizing beam splitter (PBS), hindering downsizing.

  • LBS: Small light engine rivaling Micro LED, but technology remains nascent

LBS employs RGB lasers as light sources, via optical element calibration and MEMS image scanning. Light then couples into waveguides. LBS offers high brightness, low power consumption, pure color, and high contrast. However, laser-induced speckle is possible. Ams OSRAM developed an RGB integrated laser with MEMS, shrinking the light engine to under 1cc.

Key Hurdle in AR Glasses Technology: Light Engine Size

Light engine size is pivotal for lightweight AR glasses. To achieve a near-normal glasses form factor, the light engine must be around 1cc or smaller, becoming an industry consensus.

For full-color light engines to reach this target, only LBS, Micro OLED, and Micro LED have opportunities. Micro LED’s pixel size, light efficiency, and brightness outperform Micro OLED, making it the preferred choice for light engines.

However, TrendForce states that while Micro LED’s technology maturity is evolving, challenges remain with red LED external quantum efficiency, micro display size, and FOV issues. Additionally, long-term wear and sensor integration for data transmission and processing pose further challenges.

(Photo credit: Apple)

2023-08-14

[News] TSMC’s US 4nm Fab in Arizona Faces Delays Amid Workforce Shortage and 43-Degree Heat Challenges

According to the news from Mydrivers.com, TSMC announced its ambitious plans for constructing cutting-edge 4nm and 3nm chip fabs in the United States. The move is expected to generate tens of thousands of job opportunities in the US job market. However, TSMC’s timeline for commencing production at its inaugural 4nm fab has been pushed back from 2024 to 2025. The attributed cause behind this delay is the insufficient availability of skilled American workers, causing setbacks in equipment installation.

This situation has led to a heated dispute between TSMC and local labor unions. TSMC’s assertion of a skilled worker deficit in the US has sparked disagreement from the unions. They assert that TSMC’s stance is a pretext for bringing in lower-wage overseas labor to vie for domestic employment opportunities. TSMC, on the other hand, refutes these claims, emphasizing that employing local staff on assignment doesn’t undermine their US-based operations or recruitment efforts.

Apart from the skill-related quandary, the delay in TSMC’s factory plans may have an underlying factor – the scorching conditions in Phoenix, Arizona. Sources report that the city has experienced an unbroken streak of over 20 days with temperatures hovering around 43 degrees Celsius. Notably, this heat wave has raised internal questioning within TSMC about the wisdom of selecting a desert-adjacent location for their facility.

According to this industry insider, the intense heat seemingly played a role in impeding progress. The sweltering climate of over 40 degrees Celsius undoubtedly hampers worker productivity, particularly for outdoor tasks.

The informer indicated that TSMC had an alternative option when choosing a location for its US facility. Aside from Arizona, they could have set up shop in Portland, the capital of Oregon, which is also a hub for the semiconductor industry. However, TSMC’s rationale for settling in Arizona remains undisclosed.

Notably, Phoenix, Arizona, is also a focal point for Intel’s chip investments, with the company injecting 20 billion USD into the establishment of new wafer fabs over the past couple of years.

(Source: https://news.mydrivers.com/1/928/928753.htm)

2023-08-14

[News] BYD Sees China Mastering Core NEV Technology and Robust Industry Chain

According to the news from Mydrivers.com, BYD has reached a groundbreaking milestone, producing its 5 millionth new energy vehicle. The company asserts that China now possesses critical new energy vehicle technology and a robust industry chain.

BYD contends that a globally recognized brand stands as a vital hallmark of an automotive powerhouse. Throughout the annals of automotive industrial history, every automotive giant has harbored a world-renowned brand. For instance, the United States boasts General Motors, Ford, and Tesla; Germany takes pride in Volkswagen, Mercedes-Benz, and BMW; Japan and South Korea have cultivated their own globally esteemed brands. Presently, China lacks a universally acknowledged world-class automotive brand.

Yet, recent reports from Mydrivers.com highlight that China has already ascended to the status of a new energy vehicle juggernaut, wielding pivotal core technology and a comprehensive industrial framework, thereby freeing the automotive industry from constraints. Objectively, China possesses the foundation and capability to forge a world-class brand. Subjectively, the emotional desire to establish such a global automotive brand exists.

BYD also anticipates that by 2025, the penetration rate of new energy vehicles in the Chinese market will surpass 60%. In 2022, Chinese brands forayed into over 50% of the market for the first time, with projections indicating that within 3 years, their market share will escalate to 70%. In a recent development, data from the China Association of Automobile Manufacturers (CAAM) indicates that in the first half of this year, China’s complete vehicle exports surged by 76.9% YoY, surpassing Japan and claiming the global lead for the first time.

(Source: https://news.mydrivers.com/1/928/928676.htm)

2023-08-14

[News] Silicon Wafer Long-Term Contracts Unstable, Major Foundry Seeks Price Cut from Japanese Suppliers

According to the news from Money UDN, amid a tough semiconductor market, once-stable long-term contracts for silicon wafer makers have turned uncertain. A major Taiwanese foundry seeks price cuts in upcoming contracts from a Japanese supplier. Intense negotiations are ongoing, potentially affecting industry dynamics and pricing strategies due to the Japanese suppliers’ pivotal role in the supply chain.

Market insiders suggest silicon wafer makers may resist price reductions due to their vital role in foundries. Reports hint at foundries’ challenges and the ripple effects on critical materials suppliers.

Globally, Japan’s Shin-Etsu and SUMCO are top silicon wafer suppliers, trailed by Taiwan’s GlobalWafers, Germany’s Siltronic, and South Korea’s SK Siltron. And Taiwan SUMCO joint venture with Formosa Plastics Group as “Formosa Sumco Technology”, and other companies like Wafer Works. With over 30% market share, Shin-Etsu leads, closely followed by SUMCO, combining for around 55% to 60% global share.

Taiwan’s foundries include TSMC, UMC, VIS, and PSMC, among others. TSMC, with a global market share exceeding 50%, holds a leading position in the industry.

Silicon wafers are essential raw materials for semiconductor foundries, integrated device manufacturers (IDMs), and memory manufacturers. Presently, the standard duration for silicon wafer long-term contracts ranges from three to 8 years, specifying annual supply and demand quantities. In the previous semiconductor boom, these long-term contracts often featured escalating prices year by year.

Semiconductor market shifts led to reduced foundry capacity use, heightening tensions with silicon wafer makers’ clients. Delays emerged in the last quarter, leading to agreements between manufacturers and clients. This trend has persisted into the first half of this year. Silicon wafer industry insiders acknowledge slow end-market demand recovery and relatively high client inventories.

Amidst this situation of overflowing inventories, reports indicate that a major Taiwanese silicon wafer foundry is requesting Japanese silicon wafer suppliers to not only agree to further delays in this year’s contracted shipments but also to lower prices for next year. However, no formal agreement has been reached by the silicon wafer manufacturers at this stage.

A juridical person suggests that the negotiations are currently at a deadlock, and the situation might become clearer in the fourth quarter. If the silicon wafer manufacturers eventually concede, they are unlikely to publicly admit it, in order to prevent other clients from seeking similar adjustments and causing wider disruptions.

Market insiders also reveal that the Japanese silicon wafer manufacturers facing price reduction demands are currently operating relatively well and are adopting a firm stance. From the perspective of the foundries, they are hoping for support from their supply chain partners to alleviate the pressure. Normal silicon wafer inventories typically span two to three months, yet certain silicon wafer foundries are already grappling with high inventory levels, particularly for 8-inch wafers, which might persist throughout this year.

(Source: https://money.udn.com/money/story/5612/7366962)

2023-08-14

Apple’s Impact on Micro LED’s Path and the Approaching Era of Game-Changing Applications

When Apple unveiled its inaugural wearable device, the Vision Pro, in June this year, CEO Tim Cook remarked, “Apple Vision Pro introduces us to spatial computing.”

The era of spatial computing entails redefining how users interact with digital content within the context of the real world. Apple’s ambition extends beyond mere immersive entertainment, aiming to seamlessly integrate personal computers and smartphones into everyday life and work scenarios, replicating the success it achieved in personal and mobile computing.

The launch of the Vision Pro has once again thrust new display technologies into the industry spotlight. Although the Vision Pro employs Micro OLED, the potential to achieve a portable, outdoor-capable mixed-reality headset rests on Micro LED, seen as the most promising option.

“Micro LED demonstrates balanced performance beyond average levels in terms of brightness, energy consumption, pixel density (Pixel per Inch, PPI), and optical module size,” noted Eric Chiou, Senior Research Vice President at TrendForce. He further emphasized Micro LED’s potential in the development of AR devices, stating, “This also explains why Meta, Google, and MIT are continuously evaluating and assisting in the development of Micro LED technology.”

The application potential of Micro LED in AR devices is evident from the number of companies investing in its development.

In the first half of 2023 alone, six companies—Raysolve, Porotech, Sitan, Kopin, GoerOptics, JBD—announced progress in the development of Micro LED micro-display products. Additionally, two AR glasses manufacturers, Rayneo Innovation and Nubia, unveiled products featuring Micro LED chips.

Certainly, Micro LED’s implementation is not confined to AR eyewear; it is making inroads into the realm of wearables, particularly in the form of smartwatches. Soon, consumers will find the first commercially available watch featuring a Micro LED screen on the market. Tag Heuer, a luxury watch brand, is leading the way with support from AU Optronics for Micro LED panels.

Anticipation mounts for an Apple Watch featuring a Micro LED screen, with rumors circulating consistently. According to earlier information from TrendForce, the release of the Micro LED version of the Apple Watch, originally projected for the second half of 2025, has been delayed to the first quarter of 2026. Initial reports suggested the supply of Micro LED chips would come from Epistar and Osram and that Apple would handle mass transfer at its Longtan facility. Recent reports, however, suggest that Apple might entrust mass transfer and subsequent work to its long-term collaborator, LG Display (LGD).

It’s rumored that LGD has visited Apple’s Longtan facility, indicating a potential handover of equipment to LGD, facilitating smooth mass transfer and back-end processes. Despite shifts in the supply chain, this alteration underscores Apple’s commitment to advancing the Micro LED version of the watch into mass production, with wearables continuing to play a pivotal role in the practical implementation of Micro LED.

The industry’s technological development and investment in wearables, particularly watches and AR glasses, demonstrate a shift towards small-sized sectors represented by headsets and wearables. This indicates that Micro LED is edging closer to large-scale commercialization and breakthrough applications.

Regarding the commercial development of Micro LED, the launch of large-sized products remains a critical indicator. Korean giants Samsung and LGD are pivotal players in this regard. Following Samsung’s introduction of the high-end 110-inch Micro LED TV, LGD’s plans to release a 136-inch Micro LED TV in 2024 have surfaced. Factoring in Samsung’s and LGD’s entries, a total of five companies, including AUO, BOE, and SmartKem, have announced developments in Micro LED display technology in 2023.

Considering the market trends mentioned above, based on TrendForce’s projections, the production value of Micro LED chips is expected to reach $27 million in 2023, showing a 92% annual growth. Looking ahead, driven by the expansion of current application shipments and the introduction of new use cases, the estimated chip production value is set to hit $580 million by 2027. This anticipates a compound annual growth rate of 136% from 2022 to 2027.

TrendForce is set to host the “Micro LED Forum 2023”on September 5th, from 9:30 to 17:00 at the NTUH International Convention Center. The forum has invited TrendForce’s Senior Research Vice President, Eric Chiou, alongside industry representatives from Mojo Vision, ITRI, Lumus, Unikorn Semiconductor, Porotech, Nitride Semiconductor, Tohoku University, Coherent, InZiv, AUO, and Tianma to share developments in Micro LED technology and its manifold applications.

(Photo credit: Samsung)

  • Page 306
  • 386 page(s)
  • 1930 result(s)

Get in touch with us